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SUMMARY 

The Christensen  Theory of a Stochastic model f o r  hydrodynamic 

lubr ica t ion  of rough  surfaces is extended  to  elastohydrodynamic  lubrica- 

t i o n  between two r o l l e r s .  The Grubin-type  equation  including  asperity 

e f f e c t s   i n   t h e   i n l e t   r e g i o n  is derived.  Solutions  for  the  reduced  pres- 

su re  a t  the  entrance as a func t ion   o f   t he   r a t io  of the  average  nominal 

f i lm  th ickness   to   the  r.m.6. surface  roughness  (in  terms of standard 

deviat ion u), have  been  obtained  numerically.  Results were obtained  for 

purely  t ransverse as wel l  as purely  longitudinal  surface  roughness  for 

cases   with  or   without   s l ip .  The reduced  pressure is shown to   decrease  

s l i g h t l y  by considering  longitudinal  surface  roughness.  The transverse 

surface  roughness, on the  other  hand,  has a s l i g h t   b e n e f i c i a l   e f f e c t  on 

the   . average   f i lm  th ickness   a t   the   in le t .  

The same approach was used to   s tudy   t he   e f f ec t  of  surface  roughness 

on lub r i ca t ion  between r i g i d   r o l l e r s  and lub r i ca t ion  of an   in f in i te ly-  

wide s l ider   bear ing.   Resul ts  of these two cases show tha t   t he   e f f ec t s  

of surface  roughness  have  the same trend as those found in  elastohydro- 

dynamic contacts.  

A comparison is  made between the   r e su l t s   u s ing   t he   s tochas t i c  approach 

and the   resu l t s   us ing   the   convent iona l   de te rminis t ic  method fo r   t he  inlet 

p re s su re   i n  a Hertzian  contact  assuming a sinusoidal  roughness. It was  

found t h a t   t h e   v a l i d i t y  of the  stochastic  approach  depends upon the  

number of wave cycles n within  the  Hertzian  contact.   For n larger  than 

a c r i t i c a l  number,  which  depends  upon t h e   r a t i o  of a spe r i ty   he igh t   t o   t he  

nominal f i lm  th ickness ,  6,,/h0, the   s tochas t ic   theory   y ie lds   the  same 

r e s u l t s  as that   obtained by the  determinis t ic   approach.  
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Using the  flow  balance  concept,  the  perturbed  Reynolds  equation, 

which includes a s ingle   th ree-d imens iona l   r ig id   asper i ty   in  one  of the  

lub r i ca t ing   su r f aces ,  is derived  and  solved  for  the  perturbed  pressure 

d i s t r ibu t ion .  In addi t ion ,   the  Cheng's  numerical  scheme ,. , f o r  EHD 

contacts ,  is modif ied  to   incorporate  a single  two-dimensional  elastic 

a s p e r i t y ,   o r  a waviness  profile,  on the   s ta t ionary   sur face .  The perturbed 

pressures  obtqined by these   th ree   d i f fe ren t  models are compared. Quali- 

t a t i v e l y ,   t h e   r e s u l t s   f o r   t h e   s i n g l e  2D e l a s t i c   a s p e r i t y  and the  waviness 

p r o f i l e  model  by using Cheng's  scheme, are mostly  the same. However, 

some resu l t s   ob ta ined   for   the   s ing le  3D r i g i d   a s p e r i t y   e x h i b i t   d i f f e r e n t  

trends when compared wi th   the   s ing le  2D e la s t i c   a spe r i ty   o r   t he   wav iness  

p ro f i l e .  In the  case of the  waviness   prof i le  i n  which t h e   l o c a l   e l a s t i c  

deformation is allowed,  the  magnitude of the   p ressure   f luc tua t ion  As, is 

found t o  increase  when the   p ressure   v i scos i ty   parameter  G ,  o r   t h e   r a t i o  

of the  asperity  amplitude  to  the  nominal  f i lm  thickness,  6max /h  , increases.  

On t he   o the r  hand, As is  found to   decrease as the  magnitude of the  Hertzian 

pressure PHz, o r   t h e   r a t i o  of t he  nominal f i lm  thickness   to   the  radius   of  

the  equivalent   cyl inder ,  h / R  increases.  

0 

0 
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, I  CHAPTER I 

, I .  > INTRODUCTION 

In  convent ional   s l iding  bear ings,   there   usual ly  exists a high  degree 

' of  conformity  between.  bearing  surfaces, and th i s   enables  a '  subs t an t i a l  

'.load t o  be-  generated by t h e '   t h i n   o i l   f i l m .  The perfoimance of these 

bear ings  can  be  sat isfactor i ly   predicted by so lv ing   ' t he  Reynolds equation 

- fo r   . t he   p re s su re   d i s t r ibu t ion   w i th in   t he   l ub r i can t   f i lm .  However, f o r  

.highly  loaded  concentrated  contacts,  such as gears ,  cams and r o l l i n g  

contact  elements,   the  lubrication phenomenon cannot  be  predicted by 

Reynolds equation  alone.  Local elastic deformation of the  sol id   under  

high  pressure,becomes  influencial   in  determining  the  load  capacity and 

fi lm  thickness of these  contacts.  The study of lubricat ion  processes  

including  the elastic e f f e c t s  is  present ly  known as elastohydrodynamic 

lubr ica t ion  (EHL) . 
To da te ,   t he   t heo r i e s   fo r  hydrodynamic  and  elastohydrodynamic  lubri- 

cation  have  reached a very advanced stage.  However, these  theories  are 

mostly  based on the  assumption  that   the  lubricating  surfaces  can be 

described by smooth mathematical  functions.  In  reality,  surfaces are 

never   perfect ly  smooth i n  a microscopic  scale.   In  the hydrodynamic 

lubrication  regime,  the  asperity  heights of the rough surfaces  are much 

smaller than  the  average  lubricant  f i lm. Thus, t he   e f f ec t  of surface 

roughness on  hydrodynamic l u b r i c a t i o n ,   i n  most cases, can  be  neglected. 

Hence, the  smooth f i lm  hydrodynamic lubricat ion  theories   provides  a very 

sa t i s f ac to ry   p red ic t ion  of   lubricat ion performance. In  elastohydrodynamic 

lubr ica t ion  of concentrated  contacts , there   exis t  two d i s t i n c t i v e l y   d i f -  

fe ren t   reg imes ,   the   fu l l   f i lm and t h e   p a r t i a l  f i l m  EHL. I n   t h e   f u l l  f i l m  
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regime,  the  average  nominal  film  thickness is usual ly  much greater  than 

the  asper i ty   heights ,   and,   in   this   regime,   the  behavior   of   the   contact  

can   be   p red ic ted   qu i te   sa t i s fac tor i ly  by smooth-film EHL theories.  In 

t h e   p a r t i a l   f i l m  regime,  the  asperity  heights are of the  same order as 

the  average  nominal  lubricant  film. Thus, t h e   e f f e c t  of surface rough- 

ness  in  the  regime must  be  considered. 

EHD film  thickness  has been well  accepted as an important  bearing 

design  parameter. The degree of asper i ty   in te rac t ions ,  and the   sur face  

d i s t r e s s   i n   t h e  forms  of wear, p i t t i n g  and scuf f ing   a re   assoc ia ted   wi th  

t h e   r a t i o  of the  average nominal f i lm  th ickness   to   the  r.m.s. surface 

roughness ( i n  terms of  standard  deviation a), i n  EHD contacts .   In  many 

cases, bear ing   fa i lures   can   be   a t t r ibu ted   to   insuf f ic ien t   f i lm  th ickness  

which leads  to   asper i ty   contacts .  Thus, there  is  a need to  determine 

the  surface on the f i l m  forming capab i l i t y   i n  EHD contacts.  Therefore, 

the second chapter of t h i s   d i s s e r t a t i o n  is focused on the   e f f ec t  of sur-  

face  roughness on the  average  f i lm  thickness between lubr ica ted   ro l le rs .  

The stochastic  theory  developed by Christensen 173 is extended t o  deter-  

mine the  surface  roughness  influence on the  inlet   f i lm  thickness   of  EHD 

contacts.   In  addition,  the  roughness  effect  on the  load  capacity  in 

r i g i d   r o l l e r s  and inf in i te ly-wide   s l ider   bear ing  i s  also  s tudied.  

The th i rd   chapter  compares the   d i f fe rence  between the  roughness  effect 

and waviness e f f e c t  on the  average  f i lm  thickness   in  EHD contacts.  It 

also  provides  some cr i ter ia  to   de te rmine   the   appl icabi l i ty  of the   s to-  

chas t i c  theory. 

The pressure  prof i le   enables  one t o   p r e d i c t   t h e  stress d i s t r i b u t i o n  

of the  lubricated  contact.   In  the  fourth and f i f t h   c h a p t e r s ,   t h e   e f f e c t  

of surface  roughness on the   p ressure   d i s t r ibu t ion  are discussed.  In 
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Chapter IV, comparisons are made be tween  the   e f fec t  on the   per turbed  

presgure   due   to  a s ing le   t h ree -d imens iona l   r i g id   a spe r i ty  and  due t o  a 

single  two-dimensional elastic a spe r i ty   w i th in   an  EHD con tac t .   I n  

Chapter V, t h e   s u r f a c e   p r o f i l e   b e f o r e   e l a s t i c   d e f o r m a t i o n  i s  assumed t o  

be in   the  form  of   s inusoidal   waviness .  The e f f e c t s  of the   fo l lowing  

non-d imens iona l   var iab les :   the   Her tz ian   p ressure  P the  nominal   center  

f i lm   t h i ckness  ho/R, t h e   p r e s s u r e   v i s c o s i t y   p a r a m e t e r  G, t h e  number of 

wave cyc le s   w i th in   t he   Her t z i an   con tac t ,  tl, and t h e   a s p e r i t y   h e i g h t  ho/R, 

on the   magni tude   o f   the   p ressure   f luc tua t ion  as w e l l  as the   pe r tu rbed  

p r e s s u r e   p r o f i l e  are s tudied .  

Hz ’ 
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CHAPTER I1 

, THE .EFFECT OF SURFACE' ROUGHNESS 'ON THE- AVERAGE FiaM . ' " 

.. I , THICKNESS BETWEEN LUBRZCATED RDT.U?RS . . '  ' ! ' .  ' .. 1 . 
.' 

. .  . .  . , . .  . . .  . i  C.l. . , . . .  , I . . '  , 

2 .-l' INTRODUCTION 
. .  

, . ?  ~ i 
. . I  ._. : . .  8'. , . - ^ .  . _  

The inclusion of surface irregularities in   lubricat ion  analysis   can  be  t raced 
. .  

: '  : '  
. . .  

_ I  . . , ,  . . .. .. . 

back t o  [l-31, i n  which the  roughness is  modelled as sinusoidal  or  saw-tooth 

waviness.  Subsequently, Tseng and Saibel  [6] introduced  the  stochastic  concept 
' ' 1 '  

based on  random surface  roughness  analysis on lubrication.  Their method deals  

with  surfaces   with one dimensional  transverse  roughness  only. The s tochas t ic  

model has  been  revived  by  Christensen and his  colleagues  [7,8,9,16,17] in   s tudying  

the  lubricat ion  process  between rigid  surfaces  containing  surface  roughness 

modelled as ridges  oriented  transversely  or  longitudinally.   Recently,   the  effects 

str.iated  roughness on both  bearing  surfaces  have  been  obtained by Rhow and 

Elrod [ 183. 

The e f f e c t  of surface  roughness on f i lm  thickness   in  EHD contact  has  not 

been ful ly   explored.  However, there  have  been some re l a t ed  work. For  instance, 

Fowles [43 studied  the EHD ' lubrication between iden t i ca l   s l i d ing   a spe r i t i e s .  Lee 

and Cheng [S) have s tudied   the   e f fec t  of a s ing le   a spe r i ty  on the   f i lm and pres- 

sure   d i s t r ibu t ion   dur ing  i t s  entrance  into  an  elastohydrodynamic  contact. The 

load  sharing between f lu id   f i lm  and asperi ty   contacts  as well as t h e   t r a c t i o n   i n  

p a r t i a l  EHD contacts  have been s tudied by Tal l ian  [lo], and Thompson and Bocci 

a sce r t a in   t he   e f f ec t  of  roughness on the EHD fi lm  thickness.  They concluded 

t h a t ,   t o  a f i r s t  approximation,  the  separation  between two rough surfaces  is very 

c lose   to   tha t   ca lcu la ted  by the smooth film  theory.  Recently,  pressure and trac- 

t i on   r i pp l ing  inEHD contact of rough surfaces  have  been  calculated by Tallian [19], 

by using  Christensen's  stochastic model of hydrodynamic lubricat ion.  
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In the  present  analysis,  Christensen's  approach [71 is extended to  determine 

the  surface  roughness  influence on the   in le t   f i lm  th ickness  of EW contacts. The 

Grubin-type  hydrodynamic  equation  in  the  inlet  region  for  the  rough  surfaces is 

derived and solved  numerically.  Results are compared with  smooth-film  theories. 

In addi t ion ,   the   load   capac i ty   in   r ig id   ro l le rs  and in  an  infinitely-wide  bearing 

is also  presented  for  comparison. 
. .  . .  
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2.2 GOVERNING EQUATION 

Assuming tha t   the   lubr icant  i s  isothermal and incompressible and the  s ide-  

leakage is  negligible,  the  one-dimensional Reynolds equation  governing  the  pres- 

s u r e   i n  an EHD contact is 

where h i s  the   loca l   to ta l   f i lm  th ickness   cons is t ing  of the  fol lowing  three  par ts  T 

In  the above, h i s  the  local  average  f i lm  thickness,  and d l ,  62, the  roughness 

p r o f i l e  measured  from the mean leve l  of su r f ace   p ro f i l e s  1 and 2 (Fig. 2.1). 

2.2.1 Transverse  Surface Roughness 

In   t h i s   ca se   t he   a spe r i t i e s  on both  lubricat ing  surfaces  are s t r a igh t   r i dges  

perpendicular   to   the  direct ion of roll ing.   Equation (2.2) becomes 

hT = h + 6 1 ( ~  - u,t) + b2(x - u2 t )  (2.3) 

With  the  re la t ions,  

a 6 ( x -  a6 1 a t  u t ) = - u  - 
1 ax 

Eq. (2.1) is  s impl i f ied   to  

a 
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It is assumed here   tha t   there   a re  enough numbers of asperi t ies   within  the  Hertzian 

zone such t h a t  h can be considered  as a constant  of t i m e .  L e t  the  bracketed term 

in   the   l e f t -hand   s ide  of  Eq. (2.6) be  denoted  by 

(2.7) 

For infinitely-wide  sl ider  bearing and r ig id   ro l l e r   bea r ing ,  M i s  expressed as 

above. In  elastohydrodynamic  contact,  the  reduced  pressure, q , and viscosiky, N., 

which are   respect ively 

l - e  ‘dP 
4’ cy 

are  introduced. Then, M i n  an EHD contact is  

(2 10) 

It i s  shown i n  appendix A t h a t  M i n   t h e  case of EHD con tac t ,   r i g id   ro l l e r  

bearing, or infinitely-wide sl ider bearing i s  a stochast ic   quant i ty   with a negli-  

gible   var iance comparing t o  the  variance of the terms on the   r i gh t  hand side.  

’ Re-arranging Eq. (2.7) and taktng  expected  values on both sides, one  obtains 

where 

(2 .12)  

and f(r) is  the   p robabi l i ty   dens i ty   d i s t r ibu t ion   of   the  random var iab le  y .. 
9 



Since M is a s tochast ic   quant i ty   with  zero  (or   negl igible)   var iance,  M and 3 
can  be  considered t o  be  (opptmx+ma.te~y) s tochastically  independent  quantit ies.  

1 

hT 

Hence , ,  

( 2 . 1 3 )  

Then Eq. (2.11) can  be  re-written as 

1 d- 1 u + u  M = - J  1% d x q - 4  1 h +  

T 

( 2 . 1 4 )  

where is now the  expected  or mean value of p. Subs t i tu t ing  Eq. ( 2 . 1 4 )  i n t o  

Eq. (2 .6 )  and re-arranging, one obtains   the  s tochast ic  Reynolds equat ion  for  

r ig id   ro l le rs   bear ing  and inf in i te ly-wide   s l ider   bear ing .  

S imi la r ly ,   the   s tochas t ic  Reynolds equat ion  for  EHD contact  can  be  expressed as 

d 
dx 
- r 1  5 

dx 
t 

u1 + u2 
2 

dh 
dx 
- u1 - u2 

2 
d 
dx 
- (2 .16 )  

2.2.2 Longitudinal  Surface Roughness 

When the  asper i ty   r idges are pa ra l l e l   t o   t he   d i r ec t ion  of ro l l i ng ,  d l  and b 2  

are independent upon x,  ul, u2 and t. Again,  assuming = 0, then Eq. ( 2 . 1 )  can a t  
be  simplified to 

a 

u1 + u 2 %  
dx ( 2 . 1 7 )  
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.'For  the  cases of rigid  rollers  and  infinitely-wide  slider  bearings, with longi- 

tudinal  surface  roughness, it  is shown in [73 that  the  stochastic  Reynolds 

.equation is of  the  form 

- u + u  1 2 %  
2 dx (2.18) 

. .  

Similarly,  the  stochastic  Reynolds  equation  of  an EHD contact can be shown to  be 

Sf  the  roughness  distribution  is  symnetric  to zero mean 

6 {ha * h3(l + 3 9 . 
h 

(2.19) 

(2.19a) 

2.3 METHOD OF SOLUTION 

2.3.1 Elas  tohydrodynamic  Contacts 

Using  Grubin's  approach,  it  is  assumed  that  the  average  surface  profile,  h, 

in  the  inlet  region  is  governed  by  the  deformation  produced  by a Hertzian 

elliptical  pressure  distribution  in  the  contacting  region. From [ 143,  this  pro- 

file is given  by 

(2.20) 

Introducing  dimensionless  variables Q, X, H, fir, u, U, F,, 82, 8 and S as  defined 
- " 

in  the  Nomenclature, Eq.  (2.16), for  the  transverse  roughness  becomes, 

d [9 
dx dX 

.L"" 
dH S d 
dx 2 d x  (2.21) 
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The  boundary  conditions  are: 

9 . = 0  
dX at X = - 1  (at H = 1 ) 

Q = O  at X = - -  

2 . 3 . L a  Pure, Rol1,ing. Case 

In this  case, S = 0, and Eq. (2.21) becomes 

Integrating Eq. (2.24) twioe  with  the two boundary  conditions,  .one  obtains 

-1 
H - 1  

Q* = Ql,,,l = J  T - G ~ ~ X  
-0, H Ho 

where G2 = H3 6 {%} 
HT 

and 6 = b./a 
* " 

- 
o is the  composite  standard  deviation and is defined  as i? - o + o2 , 
g(6 ) is the  roughness  height  distribution  function. 

- 2   - 2  
1 * 
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Once a and g(6 ) are given, Eq. (2i25)  can  be  evaluated  numerically  for Q . * * 

2.3.1.b Rolling and S l id in6  

I f   there  is r e l a t i v e   s l i d i n g  between surfaces ,  S w i l l .  not  ,be  zero, and the 

las t  term in   the   s tochas t ic  Reynolds equation, Eq. (2.21), w i l l  not   necessar i ly  

vanish. However, i f   t h e  roughness d is t r ibu t ion   func t ion  of bo th   sur face   p rof i les  

are the same, then 

- - 
6 8 

e {+} = E {+} 
HT yr 

Using th i s   r e l a t ion ,  Eq. (2.21) becomes 

1 

which i s  the  same as Eq. (2.24) of the  pure  roll ing  case.  Q w i l l  accordingly  be 
* 

the same as that  expressed  in Eq. (2.25). 

I f ,  on the  other  hand, one of the  contacting  surfaces is  considered rough 

while  the  other one  smooth, then Eq.  (2.21) becomes 

2 

where the  plus   s ign 

(See  Appendix B f o r  

dH S d 
- U P -  ” 2 d x  

is  f o r  3 = 

the   Fortran 

1 0, and minus s ign  

IV l i s t i n g  of the  

f o r  b2 = 0. 

numerical  analysis 

- 

(2.29) 
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De f in ing  G4 ‘7 H3 G &} 
Hr’ 

Eq. ( 2 . 2 9 ) ,  expressed ih  G2 and G becomes 4’ 

Using  boundary condition ( 2 . 2 2 ) ,  one obtains 

Integrat ing Eq.  ( 2 . 3 2 )  between -m and -1, one obtains   the  expression  for  Q 
* 

( 2 . 3 1 )  

( 2 . 3 3 )  

Eq. ( 2 . 3 3 )  can be integrated  numerically  for Q f o r   v a r i o u s   s l i d e   t o   r o l l   r a t i o s  

from the  pure  rol l ing  case,  S = 0, to   the  s imple  s l id ing   case   for  which u = u, 

u2 = 0,  and S = 2 .  

* 

1 

For EHD contacts  with  longitudinal  surface  roughness,  the  stochastic Reynolds 

equation  following Eq.  (2.19) becomes 

n 

14 

( 2 . 3 4 )  



The above  equation is v a l i d   f o r  any r o l l i n g  and s l id ing  EHD contacts.  Using 

boundary conditions,  Eqs. (2.22) and (2 .23) ,  the  reduced  pressure Q a t  X = -1 

can  be integramted as 

* 

(2.35) 

2.3.2 Rigid  Rollers 

If   the  elastic  deformation of the   ro l le rs  i s  neglected,  the smooth, average 

sur face   p rof i le  can  be  approximated by a parabol ic   p rof i le  

X2 H z - =  1+- 
b ho\ 

(2.36) 

where 

x = x/R 

ho = the  average  center f i l m  thickness 

Using the same approach as developed in  EHD contacts ,   but   with  different  dimen- 

s ionless   var iables   for  P ,  X ,  X , H ,  HT, H , 0, h2 and 7 as defined  in   the 
Jx * "  

Nomenclature, the  s tochast ic  Reynolds equat ion  for   r igid  rol lers   with  t ransverse 

surface roughness  can  be  expressed  as 
- 

dH S d  r (2.37) 
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I I I  

This  equation has the  'same form as Eq. (2.21) of the EHD contacts. Wwever, the 

boundary  conditions  for  the  case o f  rigid  rollers  will  be  different  from E q s .  (2~22) 

and  (2.23) . They a e  given by 

" 0  , dP PC: 0 
dx at X = X  * 

P = Q  at X = - a  
(2.38) 

Using  these  boundary  conditions, Eq. (2.37) can be  readily  integrated  to  yield 

.when 5 is a  dumuy  variable  for X, and X and H are  determined by imposing 
* * 

P(X*) = 0. Eq. (2.39) can  be  integrated  numerfcally  to  yield P for  the  pure  rollPng 

case (S = 0), simple  sliding  case (S = 2), as well as  rolling  and  sliding  case 

(any S). Once P(X) is  found,  the  dimensionless  load W , can be  determined by * 

For rigid  rollers  with  longitudinal  surface  roughness,  the  stochastic 

Reynolds  equation  is 

Using  boundary  conditions, Eq. (2.38), one  obtains 

(2.40) 
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* * * 
where  X  and H are  determined  by  the  condition P(X ) = 0 .  The  dimensionless 

pressure  and  load  can  be  determined  in  the  same  manner  as  that  for  rigid  rollers 

with  transverse  surface  roughness. 

2.3 .3  Infinitely-Wide  Slider 

For  an  infinitely-wide  slider,  the  smooth,  average,,sqrface  profile'  can  be 

represented  by 

H(X) = = 1 + * (1 - X) 
0 0 

( 2 . 4 3 )  

where 

h = hmin = minimum  film  thickness  at  the  exit of the  slider 
m = slope  of  the  slider 
0 

4 = length  of  the  slider 

Introducing  dimensionless  variables P, HT, X, H  and b as  defined  in  the  Nomenclature, 
one  obtains  the  stochastic  Reynolds  equation  for  an  infinitely-wide slider with 

transverse  surface  roughness, 

d [dP 
dX dx ="- dH d 

d x d x  I " I  

The  boundary  conditions  for  Eq. (2.44) are 

P ( 9 )  = P ( 1 )  = 0 

For both  surfaces  having  the  same  roughness  characteristics, 

(2.44) 

(2.45) 

( 2 . 4 6 )  
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Eq. (2 .44 )  becomes 

Integrating  twice,  one obtains 

P(X)  - 7 ds - C 2 dc 
x G2 

O H  O H  

(2 .47 )  

(2 .48)  

where C is evaluated by the  boundary condition  P(1) - 0.  For  one  surface  rough, 

and the  opposing  surface  smooth, Eq. (2 .44 )  takes   the form 

(2 .49)  

where the  plus   s ign  represents   the  case of a smooth sur face   s l id ing   aga ins t  a 

s ta t ionary  rough surface,  and the  negat ive  s ign implies the  rough s l id ing   aga ins t  

Integrat ion of the  above  equation  yields 

(2 . 50) 

(2.51) 

where C is determined by the  boundary  condition,  P(l) - 0. 

For  the  infinitely-wide  sl ider  with  longitudinal  surface  roughness,   the 

s tochas t ic  Reynolds equation is  

(2  . 5 2 )  

1 8  



which, a f te r   in tegra t ing   twice ,   y ie lds  1 . .  . 

with C determined by P(1)  = 0. In a l l  the  .above cases,  the.  load  can  be  evaluated 
? '  4 ? .,_ 1 

, .. 

by 
. .  .. , . 

, .  

(2.54) 
. .. 

2.3.4 Roughness Distribution  F.unction 

The roughness d is t r ibu t ion   func t ion  employed in   this   paper  is the same as 

t h a t  used  by-  Christehseh ' { 7 3 ,  namei?, ' I . .  

' 0  Elsewhere 

* 
6max. " 3  

, .  . .  . .  

(2 :55) 

(2.56) 

This  polynomial d i s t r ibu t ion   func t ion  is  an  approximation t o  Gaussian  distribution. 

The reason  using  this  polynomial  function is t ha t   t he  roughness he ight   d i s t r ibu-  

t ion  funct ion of many enkineering  Surfaces is  very  close  to  Gaussian [20], and 

t h a t  a Gaussian  dis t r ibut ion always implies a f i n i t e   p r o b a b i l i t y  of having asperities 

of very   l a rge   s izes  which are very  unl ikely  in   pract ice .  
. .  
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2 . 4  DISCUSSION OF RESULTS 

2.4.1 EHD Contacts 

The e f f e c t  of surface  roughness on the  pressure  generat ion a t  t h e   i n l e t  of 

EHD contacts  can  be  presented  conveniently by using a quant i ty  %, defined as the  

r a t i o  of the   in le t   p ressure   ca lcu la ted  from the  s tochast ic   theory,  Q t o   t h a t  

calculated from the  Grubin's  smooth-film  theory, Q Thus, 

* 
R' * 

S '  

% = Q,/Qs 
* *  

In  Pfg. (2 .4) ,   the   ra t io  5 is plot ted.   against  a surface  roughness parameter', 

6max 
- , for  the  following  four  cases 

1) pure  roll ing  with  transverse  surface  roughness 

2 )  pure  roll ing  with  longitudinal  surface  roughness 

3)  r o l l i n g  and s l iding  with S = 0 . 2  and 6 = 0 (smooth surface is  f a s t e r )  

4 )  r o l l i n g  and s l iding  with S = 0.2 and 62 = 0 (rough surface is  f a s t e r )  

1 

The dimensionless  load and f i lm  thickness   for   the above cases are W = 3 x 10 and -5 

H o - r =  - hO 10 -5 . 
These  curves are obtained by changing  the magni.Gud.e of 3 It is  seen   tha t ,  max. 

for  pure  roll ing  with  longitudinal  surface  roughness,  % i s  reduced  very  sl ightly 

due to   sur face  roughness e f fec ts .  Even f o r  as high as 0.99, the 

reduction is  only  about 7.5%. 

max 

Cont ras t   to   the   e f fec t  of longitudinal  roughness, ehe transverse  roughness 

has a much more pronounced e f f e c t  on the  integrated  pressure.  It tends t o  increase 

the  dimensionless  reduced  pressure and hence also  tends  to   increase  the  load 

capacity as 6 increases. For pure  roll ing,   the  transverse  roughness  causes 

an  increase  in Q from 7% t o  30% as %mx is  increased from 0.6 t o  0.99. The 

e f f e c t  of r e l a t i v e   s l i d i n g  between a smooth surface and a rough su r face   i n  EHD 

contacts is shown i n   t h e  two curves  for S = 0.2. Even for such a small s l i p , t h e r e  

- 
rnax 
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is  already  not iceable   departure  from the  pure  roll ing  case.  For the case where 

the smooth sur face ,  is f a s t e r ,   t he re  i s  an   addi t iona l  pumping e f f e c t ,  compared t o  

the  pure  rol l ing case. The reverse is t r u e   i f   t h e  roughness  surface is f a s t e r .  

The e f f e c t  of Ho is s tudied  in  Fig.  (2.6). It is shown that  the  three  curves 

f o r  €Io = lo", 5 x 9 x almost  coincide  with one another.  This  indicates 

t ha t   t he  roughness e f f e c t  on EHL is almost  entirely  independent upon H . 
0 

Fig. (2.6) shows the   in tegra ted   va lue  of Q agains t  Ho for   the  condi t ion of pure 
* 

rol l ing  with  t ransverse  roughness ,   for   dif ferent   ra t io  of 3 ranging from 

0.0 (smooth f i lm  theory)   to  0.99. It is in te res t ing   to   no te   tha t   the   curves  are 

pa ra l l e l   s t r a igh t   l i nes .  Again i t  is readi ly   seen   tha t   the  magnitude of Q depends 

on t h e   r a t i o  of Tmax . For Tmax = 0.99, there  is approximately a 20% g a i n   i n  

the mean fi lm  thickness  over  that   based on  smooth film  theory.  For Tma, = 0.9, 

and 0.6 ,  the   ga in   in  mean fi lm  thickness is  about 15% and 5% respectively.  

max 

* 

In   the  case of s imple  s l iding of an EHD contact ,  i.e. S = 2 ,  e l a s t i c  deforma- 

t i on  of asper i t ies   begins   to  be s ign i f i can t  a t  X = -1. A t  t h i s   pos i t i on ,   t he  

values of T, the r.m.8. roughness  amplitude and g(6 ) the   asper i ty   d i s t r ibu t ion  

function, w i l l  no longer  be the same as those of the undeformed aspe r i t i e s .  There- 

fo re  Eq. ( 2 . 3 3 )  cannot  be  applied  under  this  situation. One should  notice  that  

Eq. (2 .33 )  is  v a l i d   f o r   r o l l i n g  and sliding  case,   only when t h e   e l a s t i c  defo-t.ion 

of asper i t ies   near  X = -1 can  be assumed t o  be  negligibly small. This  occurs 

only when S is small. 

* 

2..4.2 Rigid Rollers 

The e f f e c t  of  surface  roughness on the  dimensionless  load of r i g i d   r o l l e r s  

is  presented i n  terms of % which is a quantity  defined as t h e   r a t i o  of the 

dimensionless  load from the  s tochast ic   theory,  WR, t o   t ha t   o f   t he  smooth f i lm 

theory, Us. Thus 

* 
* 
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* *  "r; = WR/WS ( 2  . 58) 

Results of 5 versus a for   the  fol lowing  s ix   cases  are shown i n  Fig. e2-7): 

; 1. simple  s l iding of a smooth r o l l e r   a g a i n s t  a s ta t ionary"rough  rol ler  

Illax 

with  transverse  surface  roughness, S = 2,  

2. r o l l i n g  and sliding  with  transverse  roughness;  S = 0.2, 61 = 0 (smooth 

surface is  f a s t e r )  , 
3. pure  roll ing  with  transverse  roughness,  

4 .  r o l l i n g  and sliding  with  transverse  roughness;  S = 0.2, b2 = 0 (rough 

surface i s  f a s t e r ) ,  

5. s imple  s l iding of a rough r o l l e r   a g a i n s t  a s ta t ionary  smooth r o l l e r  

with  transverse  roughness; S = 2 , 

6. longitudinal  surface  roughness. 

The center   f i lm  thickness   for   the above  cases i s  h /R = 5 x 10 . -4  
0 

Simi lar   to  elastic ro l l e r s ,   t he   e f f ec t   o f   su r f ace  roughness on r i g i d   r o l l e r s  

max 5 with  longitudinal  roughness is qui te  small. For '6 F 0.99, the  reduction of. 

is  only .about 5%. 

For  pure  rolling  with  transverse  roughness, is  increased by about 16% 

when a = 0.99. For roll img and s l iding  with S = 0.2 and smooth surface 

moving f a s t e r , t he re  is  an  increase  in  load  carrying  capacity,  compared to   the  

max 

r o l l i n g  and s l iding  case.  When a smooth r o l l e r  i s  s l id ing   aga ins t  a s ta t ionary  

rough ro l l e r ,   t he re  is  a subs t an t i a l   i nc rease   i n  %. When Tmax = 0.6 and 0.99, 

the   ga in   in  5 are 8.5% and 39% respectively.  However, when a rough r o l l e r  i s  

s l id ing   aga ins t  a s ta t ionary  smooth r o l l e r ,  % is almost  unaffected. When Tmax 
is greater  than 0.66, % begins   to   decrease   s l igh t ly   a f te r  a steady  increase. 
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This small d i p   i n  % is suspected  to   be caused by using  the above  mentioned  poly- 

nominal function as the  surface  roughness  distribution  function. When a s inusoidal  

d i s t r ibu t ion   func t ion  [17] which is defined as, 

- 3 4 6  < 3  

Elsewhere 

'* 

is  employed, t he   r e su l t s  which are not   plot ted  here  show that   the   dip  djsappears  

and t h a t  % increases  with  the  increase of 3 max' 

2.4 .3  ' Infinitely-Wide  Slider  Bearing 
* 

In  Fig. (2.8), W is plot ted  against  Fmax for  the  following  four  cases:  

1. simple  s l iding of a smooth surface  against  a rough surface  with  t rans-  

verse roughness, 

2. both  surfaces  having  the same roughness dis t r ibut ion  funct ions  with 

transverse  roughness, 

3. simple  s l iding of a rough surface  against  a smooth one,  with  transverse 

roughness, 

4. longitudinal  surface  roughness. 

Qualitatively,   the  roughness  effect  on a s l i d e r  checks  very w e l l  wi th   that  on 

ro l l e r s .  When the  roughness  direction is longitudinally  oriented,  the  load  carry- 

ing  capacity of t h e   o i l   f i l m  is reduced.. 

In   the   case  of transverse  roughness,  the  effect on load  capacity i s  always 

beneficial.  For  both  surfaces  having  the same kind  of  roughness d i s t r ibu t ion  

function, W is increased by 66% approximately, when xmax is  0.99. For a smooth 

sur face   s l id ing   aga ins t  a rough  one,  the  gain i n  W i s  even larger .  W is 

increased by  about 129% when Tmax is 0.99. For a rough sur face   s l id ing   aga ins t  

a smooth  one ,W is only  increased  s l ight ly .  

* 
* * 

.k 
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The authors '   resul ts   agree  very w e l l  to   those  obtained by Rhow and Elrod [18], 

who have  s tudied  the  effects  of two-sided s t r a i t e d  roughness on the  load-carrying 

capacity of a n   i n f i n i t e l y  wide s l ider   bear ing.  The only  exception is t h a t  the 

authors '   resu l t s  show a small d i p   i n  W , when T- is  larger  than 0.9. This 

small d i p   i n  W is  caused by employing the  polynomial  function as the  surface 

roughness  distribution. When the   s inusoida l   d i s t r ibu t ion  is used ,   the   d ip   in  W 

disappears. 

* 
* 

* 
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2.5 

1. 

2. 

3. 

4. 

CONCLUSIONS 

Based on Christensen's  stochastic model of hydrodynamic lubr ica t ion ,  a 

Grubin  type  elastohydrodynamic  analysis a t  t h e   i n l e t  of a Hertzian  contact 

indicates  that   surface  roughness  can have a not iceable   e f fec t  on the  level 

of mean fi lm  thickness between EHD contacts. 

For  longitudinal  surface  roughness,   r idges  parallel   to  the  direction of 

ro l l ing ,   the   p resent   ana lys i s   p red ic t s   an   in le t   p ressure   o r   in le t   f i lm 

thickness smaller than  that   predicted by the  smooth-film EHD theory. 

For  transverse  surface  roughness,   r idges  perpendicular  to  the  direction of 

r o l l i n g ,   t h e   i n l e t  mean f i lm  thickness   level  is increased  noticeably due 

to   the   addi t iona l  pumping by t ransverse  r idges.  The l eve l  of increase is 

mainly a function of d /ho, t he   r a t io  of the maximum ridge  height   to   the 

mean fi lm  thickness a t  t h e   i n l e t  and is  not   sens i t ive   to   o ther   opera t ing  

parameters.  For bmax/ho approaching  unity, which  corresponds to   ho/o = 3 

fo r  bmax = 3a, one can  expect  an  increase of 25% i n  mean fi lm  thickness 

compared t o   t h e  smooth-film EHD f i lm  thickness   for   pure   rol l ing.   Resul ts  

f o r  small s l i d e   t o   r o l l   r a t i o s   i n d i c a t e s   t h a t   t h e   c a s e  of smooth s l id ing  

Over rough g ives   fur ther  enhancement i n  mean f i lm  thickness ,  whereas the 

case of  rough s l iding  over  smooth y ie lds  a s l igh t   reduct ion   in  mean f i lm 

thickness comparing to   pu re   ro l l i ng .   Fo r   h igh   s l i de   t o   ro l l   r a t io s ,  i t  

was found tha t   l oca l  elastohydrodynamic e f f e c t  due to   l oca l   p re s su re   f l uc -  

tuat ions w i l l  become s ign i f i can t ,  and the  present   analysis  based on the 

Grubin  approach w i l l  become invalid.  

For r i g i d   r o l l e r s  and infinitely-wide  sl ider  bearings,   load  capacit ies  cal-  

cu la ted   for  rough surfaces  show trends similar to   those  found i n  EHD contacts. 

However, the   e f fec ts   for   in f in i te ly-wide   s l ider   bear ings  are much s t ronger  

max 

than   t ha t   fo r   r i g id   ro l l e r s .  
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u1 
TRANSVERSE  ROUGHNESS 

LONGITUDINAL  ROUGHNESS 

Figure 2-1 EHD Contacts Between Two Rough Surfaces 
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TRANSVERSE ROUGHNESS 

Figure 2-2 Rigid Rollers With  Rough Surfaces , .  
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in 

TRANSVERSE ROUGHNESS 

Figure 2-3 An Infinitely-Wide S l ider  Bearing with Rough Surfaces 
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CHAPTER I11 

WAVINESS AND ROUGHNESS I N  ETASTOHYDRODYNAMIC  LUBRICATION 

3.1 INTRODUCTION 

A stochastic  theory  for  elastohydrodynamic  lubrication  of  contact  with two- 

sided  roughness  has  been  developed i n  Chapter 11. The basic  requirement of t h i s  

theory is that  the  roughness  pattern must be very  dense  within  the  contact zone. 

In  other words, the  largest  wavelength  in  the  roughness  spectrum must be small 

compared to  the  contact  width.  If the  largest  wavelength is  of the same order of 

the  contact  width,  surface  roughness becomes surface  waviqess. The s tochas t i c  

theory may be inva l id   in   th i s   reg ion .  

In  order  to  ascertain  the  conditions  under which the  stochastic  theory becomes 

va l id   the  reduced pressure based on the  deterministic  approach  using a s inusoidal  

p r o f i l e  and that   calculatqd from the  s tochast ic   theory  using a surface  roughness 

d is t r ibu t ion   equiva len t   to   the   s inusoida l   p rof i le  is compared. The comparison 

i s  only made for  the  transverse  roughness  since  the  effect  of longi tudinal  rough- 

ness is usual ly   negl igibly small comparing to   t he   e f f ec t  of transverse  roughness. 

3 .2  GOVERNING E QUAT ION 

In  comparing the   e f fec t  of waviness and roughness on the reduced pressure,  

the   sur face   p rof i le  is assumed t o  be in   t he  form  of s inusoidal  waviness. The 

reduced  pressure i s  then  solved by the  deterministic  approach  for  the waviness 

case. A t  the  same time, a densi ty   dis t r ibut ion  funct ion  equivalent   to   the chosen 

s inusoidal  wave is evaluated. Using this  equivalent  roughness  d,istribution  func- 

t ion ,   the  reduced pressure  for  the  roughness  case is  then  soived by the   s tochas t ic  

approach as i l l u s t r a t e d   i n  Chapter 11. Then, t he   e f f ec t  of  surface  waviness and 

roughness w i l l  be compared for  the  pure  roll ing  case.  
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3.2.1 The Waviness Case 

In   t he  waviness case, the  one-dimensional  Reynolds  equation  governing  the 

pressure   in  an EHD contact of an  isothermal and incompressible  lubricant is 

u 1 + u2 ahT ahT -+ -  

61,62 = roughness  amplitude  measured from the mean level of surfaces  

1 and 2 

6 2  = 6 s i n  [ (2n2rr) (x - u2t ) ]  
max2 

(3.3) 

01 = u p  

e 2  = u2t  

It is assumed t h a t   t h e   a s p e r i t i e s  on both  surfaces are s t ra ight   r idges  perpendicular  

t o   t he   d i r ec t ion  of ro l l ing .  With the  re la t ions 

Eq. (3.1) is s implif ied as 
n 

It is fu r the r  assumed tha t   there  are enough number of asper i t ies   wi th in ,   the  

Hertzian  contact zone  such t h a t  h can  be  considered as a constant of time. 
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dh 
dt . i.e. "=o (3.7) 

Hence,  in  the  case  of  pure  rolling,  one  obtains 

- 292 'u- 
(h3 ) dx 

dh 
dx 1% dx (3.8) 

with  dimensionless  variables QW, X, H ,  HT, u, U, 61,  x2, and  as  defined  in  the 

Nomenclature, Eq. (3.8)  is transformed  to 

- - 

d 
(3 9 )  

0 

where H ,  the  average  surface  pro'file  in  the  inlet  region  is  governed  by 

The  boundary  conditions  are: 

dQW - =  
dx 0 at x = - 1  

(3.10) 

(3.11) 

Q W - 0  at x = - a ,  (3.12) 

Integrating Eq. (3.10)  twice  with  these  two  boundary  conditions,  one  obtains 

In  the  pure  rolling  case 

e l  = e 2  = e = ut 

In  addition,  it  is  assumed  that 

nl = n2 = 

(3.13) 

(3.14) 

(3.15) 

(3 . 16) 'max = ' 1 max + 62 max 
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I 

For  given  ho/R, W, 6max, n and 8 ,  Eq.  (3. 

integration  routine. 

,13)  is  solved  numerically  by  Simpson’s 

3.2.2 The  Roughness  Case 

The  probability  density  function  corresponding  to a sinusoidal  wave is [171 
1 

f(6*) = (3.17) 

0 elsewhere 

From  Chapter 11, the  corresponding  reduced  pressure  at  the  inlet  is 
-1 1 9: = j- (&-) G 2 U  
-a Ho H 

where 1 

G2 = - 1  3 J” d6* 

(3.18) 

(3.19) 

QR = Q calculated by stochastic  theory. 
* *  

Hence is evaluated  for  different  values of 6max. 
* 

3.3 DISCUSSION OF RESULTS 

Though  the  following  examples  are  only  connected  with  the  pressure  generation 

at  the  inlet  of  elastohydrodynamic  contacts,  yet,  qualitatively,  the  general  trends 

of the  results  will  be  relevant  to  other  types  of  bearing  and  surface  irregularity. 

The  comparison  between  waviness  and  roughness  can  be  presented  conveniently 

by  using a quantity 5 which  is  defined  as 
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* * 
where 8, and Q, stand 

model and the roughne 

f o r  the' i n l e t  reduced  pressure  calculated from the  waviness 

ss model respectively.  Hence, by de f in i t i on ,  % is the 

f rac t lona l   devia t ion  of t h e   i n l e t  reduced  pressure  of  the  *aviness' model -from 

t h a t  of the  corresponding  roughness model. :. The r e s u l t s  'of 'such a comparison are 

shown i n  Fig. 3.1 t o  Fig. 3.3.  The dimensionless  load and .film  tihickness  for -I 

these examples a r e  W = 3 x and Ho = ho/R = whi le   the   ra t io  Gmax/ho i n  

these  three  f igures   are  0.3, 0.45 and 0.6 respectively.  The phase  angles  chosen 

are 0, n/2,  n and - n / 2  while  the  n-values are integers.  

It i s  readi ly   seen  that  % heavily depends upon the  phase  angle 0 f o r  

small n. Pa r t i cu la r ly ,   fo r  8 = rr/2 and - n j 2 ,  the  magnitude of % even  changes 

signs. However, t he   e f f ec t  of phase  angle on % decreases  rapidly as n increases. 

Furthermore,  for  larger 6max which means more pronounced asper i ty   in te rac t ion ,  

is  la rger   for   the  same n. For smaller 6max, K,, is smaller. The approximate  values 

of 5 a t  n = 5 and n = 10 for  the  extreme  cases of e = - n / 2  and n / 2  are l i s t e d  as 

follows 

KD 

I n = 5  I n = 10 
~ 

'max'ho 0.3 0.3 0.45 0.6 0.45 0.6 

5 i3.5%1 f 6% *lo% M.5% f 1% f l  .5% 

~~ ~ ~~ ~ ~~ 

These resul ts   provide a be t t e r   unde r s t and ing   t o   t he   s t a t i s t i ca l  roughness 

theory. F i r s t  , they show tha t   t he   e f f ec t  of  phase  angle  vanishes  with  increasing 

n. Second, t he   e f f ec t  of n becomes less important when n is greater   than some 

critical va lue   for  a given Gmax.The discrepancy.between  the  waviness model and the rough- 

ness-model becomes poorer as 6 max/ho increases. It is  qui te   ev ident   tha t  n and 

'maJho are both  important  parameters  that  determine  the  validity of the s ta t is t ical  

theory  for  roughness  surfaces.  For  the  particular  numerical example  used i n   t h e s e  
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calculations, it is  found that  for n > 10, waviness is equivalent  to roughness and 

that  the  stochastic theory holds. Even for n = 5 ,  one  can s t i l l  apply the sto- 

chastic theory with reasonable  accuracy. 
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3.4 CONCLUS IONS 

For a given W and Ho 

1. e ,  n and 6 madho are the   parameters   to   de te rmine   the   devia t ion   of  

the   s tochas t ic ,   roughness  made f rom  the   de te rminis t ic  waviness 

model. 

2. The e f f e c t  of  phase  angle  diminishes  with  increasing n. 

3.  The e f f e c t   o f  n vanishes  as n becomes l a r g e ,  and t h e   s t o c h a s t i c  

theory   for   roughness   sur face  is  proved t o   b e   v a l i d  as n approaches 

a c r i t i ca l  value  depending on 6 / h   f o r  a given W and H,. max o 
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Fig. 3-1 The  Effect o f  the  Number  of  Wave  Cycles, n, and the 
Phase  Angle, 8 , on the Percentage of Deviation  of  the 
Normalized  Reduced  Pressure, K for  Roughness  to  Thickness 
Ratio  Smax/ho = 0.3 D '  
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CHAPTER LV 

PRESSURE  PERTURBATION IN EHD CONTACTS 

DUE  TO AN ELLIPSOIDAL ASPERITY 

4.1 INTRODUCTION 

Recently,  there  has been a growing interest   in   the  effect  of surface 

roughness on the  bearing  performance in  thin  f i lm  lubrication. In Chapter 

11, the  stochastic  theory is  used to  study  the  effect of surface roughness 

on the  average EFID film  thickness and the  integrated  pressure a t  the  inlet  

of the  lubricated  Hertzian  contacts. However, the  stochastic  theory is  in- 

capable of predicting any detailed  local  perturbations  in  pressure o r  de- 

formation  caused by the  asperit ies.  It was recently  pointed  out by Tallian 

that  the  pressure  ripples can r i s e   t o  a very  high  level  in  rolling and 

s l iding EHD line  contacts. These r i p p l e s  are  very  l ikely one of the  chief 

attr ibuting  factors  to  contact  fatigue.  

In  the   l as t  few years , there  has been considerable  interest in the 

basic  event  involving a single  asperity  entering an EHD contact €53 or  the 

encounter between two ident ical   asper i t ies  € 4 1 .  The work in  this  chapter 

i s  aimed towards gaining  further  understanding of the  effect  of a single 

asperity on pressure  distribution in a l ine  EHD contact.  Special  attention 

i s  given to  the  three-dimensional  aspect of the  asperity which i s  assumed 

to  be e l l ipso ida l   a t   the   t ip .  The e f fec ts  of e l l ipt ic i ty   (aspect   ra t io)  on 

the double  amplitude of pressure  fluctuations under various  rolling and 

sliding  condition i s  examined in   de t a i l .  
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4 2 EIAmEIATICAL ANALYS IS 

The present   analysis   consis ts  of two par ts .  The f i r s t   p a r t   s t u d i e s   t h e   p r e s -  

sure   f luctuat ions  due  to  a s ingle   three-dimensional   e l l ipsoidal   asper i ty  at the  

in l e t   r eg ion  of an EHD contact assuming tha t   the   asper i ty   shape  is unaffected by 

the  perturbed  pressures.  These pressure  f luctuat ions are determined by solving a 

perturbed Reynolds equat ion,   in  which the  unperturbed  pressure  prof i le  is obtained 

by using a l ine   contac t  EHD analysis  [22]. Results  are  presented as the  perturbed 

pressure   p rof i le ,  i , as well  as the  amplitude of the  pressure  r ipple  , as a 

function of e l l i p t i c i t y   r a t i o ,  y ,  maximum Hertzian  pressure,  PHz, nominal EHD f i lm  

thickness h /R, a sper i ty   s ize ,   b ,   asper i ty   he ight ,  cl/ho , pressure  viscosi ty   coef-  

f i c i e n t ,  G, s l i d e   t o   r o l l   r a t i o ,  S,  and the   pos i t ion  of the   asper i ty   cen ter  X 

S J  

- 
0 

3' 

In  the  second  par t ,   the   l ine  contact  EHD analysis  [22] is  modified  to  include 

a two dimensional  asperity  r idge on the   s ta t ionary   s ide  of the  lubricated  contacts .  

I n   t h i s  approach, t he  elastic deformation  of  the  asperity is  included.  Results 

which are presented asthedoubleamplitudeoftheperturbedpressureasafunction of 

PHz, ho/R, b,  cl/ho, G, and X3, are compared with  those  obtained  for  the  three 

d imens iona l   e l l ipso ida l   asper i ty   wi th   l a rge   e l l ip t ic i ty   ra t io   for   the   case   o f  

s imple  s l iding between a smooth sur face  and a s t a t iona ry   a spe r i ty  (S=2). 

- 

4 . 2 , l  Geometrical  Configuration 

The contact between two cylinders as shown i n  Fig.  (4.la)  can  be  described by 

an equivalent  cylinder  near a f l a t   s u r f a c e  as sho1.m i n  Fig.  (4.lb). As the  contact 

width is  very small compared t o   t h e  dimension  of the  cyl inder ,   the   f i lm  thickness  

€or a r ig id   cy l inder ,  h without   the  asper i ty  is 
8' 

X 
2 

hg - ho + 2R (4.1) 

where x = coordinate   a long  the  f i lm 
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R R = radius  of r o l l e r s  1 and 2 ,  

ho = undeformed center   f i lm  thickness  

1 2  

With elastic deformation,   the   f i lm  thickness   prof i le ,  s t i l l  without  the a s p e r i t y  

v1,v2 

5 

- - 

- - 

P1(S) = 

Ref e r r i n g   t o  

can  be  written as 

smooth-f i l m  thickness 

center   f i lm  thickness  a t  x=O 

Young's modulus f o r   r o l l e r s  1 and 2 

Poisson ' s   ra t io  of r o l l e r s  1 and 2 

dummy v a r i a b l e   f o r  x 

smooth-film  pressure  profile 

Fig. (4.2 ) the   height  of a three-dimensional  el l ipsoidal  asperity 

6 = 6 p o s  T\ ( 4 . 3 )  

As the  cont'act  width is  very small compared to   the   rad ius  of the  cylinder,  is 

very small and 

Thus the   asper i ty   he ight   func t ion  of a three-dimensional  asperity  can  be  approxi- 

mately  written as 
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be expressed as 

. .  
elsewhere 

The t o t a l   l o c a l   f i l m   t h i c k n e s s ,   h T ,   a t  any point   under   the  surface 

a s p e r i t y  i s  

h = hl+ 6 T 

4.2.2 Governing  Equations 

4.2.2.1 The Smooth-Film  Case 

Refe r r ing   t o  [221, t h e  two coupled  equations  governing  the  pressure ant 

d is t r ibu t ions   in   an   e las tohydrodynamic   l ine   contac t   be tween two r o l l e r s   w i t h   i s o -  

thermal  and  incompressible  lubricant  are:  

The Reynolds  equation 

- =  dpl 6p. (ul+ u2) (v, - h \  
dx 

hl 

where  ply  hl,, h and x are already  def ined 

3 f i l m  

CL v i s c o s   i t y  

u1,u2 z v e l o c i t y   o f   r o l l e r s  1 and 2 

and t h e   f i l m   t h i c k n e s s   p r o f i l e  as descr ibed   in  Eq.  (4.2). In non-dimensional  form, 

E q s .  ( 4 . 8 )  and (4.2) become 
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. .. 

(4.10) 

where = P1/PHz, X = x/b,  H1 = hl/ho, Hi = ho/R, 

Using the same numerical scheme as developed i n  [22], these two equations are solved 

by the Newton-Ralphson method. P1(X), H1(X) and a re   so lved   for  a given set  of 

ho/R, PHz, and G. These  smooth-film r e s u l t s  are used as the  inputs  to  the  perturbed 

Reynolds equation  described later. 

4.2.2.2 The Discretized Reynolds  Equation 

It is assumed here   tha t   the   v i scos i ty  is  an  exponential  function of the pres- 

sure   with a pressure   v i scos i ty   coef f ic ien t  cy, i.e. 

In  numerical form the  steady Reynolds equation  for  an  incompressible  lubricant 

can  be  expressed by dividing  the  contact zone i n t o  small gr ids   wi th   i r regular  

spacings.  Referring  to  Fig. (4.3)  and applying  the  pr inciple  of conservation of 

mass, one ob ta ins   fo r   t he   i t h   g r id  

(4.12) 

(4.13) 
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Combining E q s .  (4.12) t o  (4.15)  and  re-arranging,  one  obtains . . 

(4.14) 

. (4.15) 

Thus ply  the  smooth-f i lm  pressure  prof i le  and h the  smooth-f i lm  thickness   are  

funct ions of x only.  

1' 

4.2.2.3 ~~ The Perturbed Reynolds  Equation 

The pressure   d i s t r ibu t ion   can   be   cons idered  as t h e  sum of the  smooth-film 

pressure ,  and the   per turbed   pressure ,  qj. Define P 1  

P = P1+ @ 

Since p1 i s  a func t ion  of x on ly ,   t he   de r iva t ives  of p are: 

(4.17) 

(4.18) 

(4.19) 

For a two-dimensional   f low  f ie ld ,   the   pr inciple   of   conservat ion of mass as appl ied 

t o  t h e   ( i , j ) t h   g r i d  as shown in   F ig .   (4 .4)   y ie lds  
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(4.20) 

3 

where m 1 = { - % E + p ( + ) h j  
u + u2 

i-112, j 

It is  assumed that  the  value of a@ is much smaller  than  unity  such  that e-cr@ can 

be l inearized as 

e-a@ = (1 - ad) (4.22) 

by using  Taylor's  series  expansion.  Neglecting  second  order  term, Eq. (4.21)  can 

be re-written  as 

Likewise, m2, m3, and m can be shown t o  be 4 
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Subs t i tu t ing  E q s .  (4.23) t o  (4.26) into,   the   lef t -hand  s ide of Eq.  .(4.2?),  'one 

obtains 

With the   re la t ions  

- ahl 
a t  = o  

and 

5 6(x - u2 t )  =. - u2 ' as 

the  r ight-hand  side of E q .  (4.20) can  be  re-written as 

Equating Eqs. (4.27)  and (4.30) and simplifying, one obtains 

51 

(4.27) 

(4.28) 

(4.29) 

(4.30) 



+ 6CLs(u1- u2) [6i+1y'- 8i-1d]} (4 .31 )  
i-112 j 

2 

Using   the   cen t ra l   d i f fe rence   approximat ion   for   the   p ressure   g rad ien ts ,  Eq. ( 4 . 3 1 )  

L 2 -1 

f \ 

(4 .32)  
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(4.32) 

After  re-arranging and the  following  non-dimensional  variables are introduced: 

Ho= ho /R, CUD= 48 U D /H o O b ,  

- 

the  governing  equation Becomes: 

(4.33) 

53 
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(4.33) 
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4.2 .3  Method of   Solut ion 

I n  Eq. (4 .331 ,  Biwl, j ,  @i , j - l ,  @i , j '  @i, j+l ,  @i+l,j are the   on ly  unknowns. H1 

and p1 considered as known are determined by t h e  method o u t l i n e d   i n  [223 f o r   t h e  

smooth lubricated  contacts .   Thus,  Eq. ( 4 . 3 3 )  can  be  re-wri t ten  in   the  fol lowing 

matrix form: 

( 4 . 3 4 )  

where r A i l  and pi] are M x M diagonal   square  matr ix;  [B.] is a M x M t r i -d iagonal  

square  matr ixj[@ 3, [ai), [@i+ll and {Ri3 a r e  M x 1 column matrix;M and N are 

t h e  number of   g r ids   used   in   the  x and y d i r e c t i o n s .  

1 

i- 1 

In   p rescr ib ing   the   boundary   condi t ions   for  Eq.  ( 4 . 3 4 ) ,  i t  i s  necessa ry   t o  

assume t h a t   t h e   e f f e c t  o f   t he   a spe r i ty  on t h e   p r e s s u r e   d i s t r i b u t i o n  a t  IX-x / b ' l  2: 5 

or   1y /a ' l  2 5 is neg l ig ib l e .   Th i s   a s sumpt ion   j u s t i f i e s   t he   p re sc r ip t ion   o f   t he  

contact .  Thus the  boundary  conditions are @ = 0 along X-x3/b' = rf-: 5 and along 

y / a '  = * 5, o r  

3 

( 4 . 3 5 )  

@ i , j  = o  f o r  j = M 

Along y=O o r  j= l ,  the  f low i s  considered  to  be  symmetric,  and th i s   g ives   the   fo l low-  

ing  addi t ional   boundary  condi t ion,  

@i,j-I @i, j+l  
- - f o r  j=1 ( 4 . 3 6 )  

Eq. (4 .34 )  is solved  numerically by t h e  Columnwise Matr ix   Inversion Method t25-J. 

4 .3  DEFORMED  ASPERITY ON THE STATIONARY SURFACE 

I n   t h e  case of s imple   s l id ing   of  a smooth s u r f a c e   a g a i n s t  a s t a t i o n a r y   a s p e r i t y ,  

the  non-dimensional  Reynolds  equation  and  elasticity  equation are r e s p e c t i v e l y  
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( 4 . 3 7 )  

H = H  + -  6 

' h  
( 4 . 3 8 )  

0 

In   th i s   case ,  6 i s  a function of x only.  Thus, a6/at  = 0. Therefore  these  coupled 

equations  can  be  solved  simultaneously  using  the same numerical scheme as described 

i n  r221. ,The r e s u l t s   a r e  compared with  those  obtained by solving  the  perturbed 

Reynolds equation. 

4.4 DISCUSSIONS OF RESULTS 

The r e su l t s  of the  perturbed  pressure @ are  presented as A s ,  which is defined 

as 

( 4 . 3 9 )  

where the  posi t ion j-1 i s  a t  the   cen ter l ine  of the  asper i ty   a long  the  s l iding 

direct ion.  A t  th i s   pos i t ion ,   the   e f fec t  of a spe r i ty  on @ is most severe.  Since 

@ is a function of P G ,  ho/R, F, y , cl/ho, x3, and t h e   s l i d e   t o   r o l l   r a t i o s ,  

the   e f fec ts  of these  var iables  on A are   s tud ied   separa te ly .  

Hz ' 

S 

(1) Effect  of q ' R  
h 

With PHz = 0.003, G = 100, X3 = -0.5, = 1 / 3 2 ,  c /h = 0.3, the   resu l t s  of 1 0  

h,/R versus A a r e  shown i n  Fig. (4 .6) .  In  the  case of 2-D e l a s t i c   a spe r i ty ,   t he  

magnitude of A increases as ho/R increases from 1.0 x 10 t o  about ho/R = 5 x 

(approximate) a f t e r  which the magnitude  of A decreases  with  further  increase  in 

ho/R.  This phenomenon i s  a t t r i b u t a b l e   t o   t h e   l o c a l   e l a s t i c   e f f e c t  of the  asper i ty .  

In   general ,  one might  imagine tha t   t he   e f f ec t  of roughness on @ should be much more 

S 

-6 
S 

S 

severe as t h e   r a t i o  ho/R becomes smaller. However, i n  an  elastohydrodynamic  contact, 
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the  elastic e f f e c t  becomes more s ign i f i can t  as hJR becomes smaller. Thus, f o r  a 

f i x e d   r a t i o  of  cl/ho, the  elastic e f f ec t   t ends   t o   f l a t t en   ou t   t he   a spe r i ty  and 

produces a trend which shows a decrease  in  A, as h / R  decreases . On the  other  hand, 

f o r   t h e  3 D  r ig id   asper i ty   ana lys i s   the  elastic e f f e c t  is  not  accounted;  therefore, 

the  magnitude  of A, consis tent ly   increases   with a decrease  in h /R. 
0 

Based  on the   r e su l t s  shown i n  Fig. 4.6, it appears  that   further comparisons 

between the  2D-elast ic   asper i ty  and  3D-rigid a spe r i ty   r e su l t s  are more meaningful 

for  values  of h /R greater   than 1.0 x lo”, s ince  below th is   va lue  no good agree- 

ment is expected. 

0 

(2) Effect  of PHz 

I n  hydrodynamic lubricat ion,   wi th  a r ig id   a spe r i ty ,  i t  is  expected  that  the 

e f f e c t  of a spe r i ty  on A w i l l  become moresevere as the  load  increases.  However, fo r  

EHD contacts ,   th is   s imple  t rend is only  expected to   be  t rue  i f   the   load  parameter  
S 

PHz i s  s u f f i c i e n t l y  small. For  very heavy loads,   the  elastic e f f e c t  w i l l  i ron  out  

t he   a spe r i ty  and t h i s  may decrease  the magnitude  of As. Such trend is  demonstrated 

i n  Fig. (4 .7 ) .  In  the  2D-elastic  asperity  curve,   the magnitude of As increases 

with PHz u n t i l  P = 0.0045. Beyond th i s   po in t ,   t he  magnitude of As f la t tens   ou t  

and shows a tendency to   decrease  as load  further  increases.  On the  other  hand, 

Hz 

the  3D-rigid  asperity  curve shows a s teady   increase   in  As with pHz even for   very  

heavy  loads. The lack of  agreement a t  these heavy  loads is d e f i n i t e l y  due t o   t h e  

loca l  elas t i c  e f f e c t  . 
Referring  to  Fig. (4.8), with   the   ra t io  ho/R changing from 10-5 t o  10-6, the 

discrepency  between  the  3D-rigid  asperity  results and the  2D-elast ic   asper i ty  is 

greatly  enlarged.  In  this  regime  of  extremely  thin  film,  the  local e las t ic  e f f e c t  

is so overwhelming t h a t  one cannot  expect any v a l i d i t y  of the  3D-rigid  asperity 

per turbat ion  analysis  . 
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(3)  Effect  of G 

The e f f e c t  of pressure-viscosity dependence is examined  by varying G from 100 

t o  500 f o r  PHz= 0.003, ho/R = 10 , X3= -0.5, b = 1/32, and cl/%=. 0.3. The reason 

for   us ing  a mild  pressure-viscosity  dependence is because  recent  studies  in EHD 

t ract ion  has   indicated  that   the   effect ive  pressure-viscosi ty   coeff ic ient   within  the 

Hertzian  conjunction is only a small f r ac t ion  of  those measured  under s t a t i c   e q u i -  

librium.  For  this  reason, i t  is bel ieved  that   values  of G around 500 should  not  be 

unreasonable   to   represent   the  effect ive  pressure-viscosi ty  dependence i n   t h e  con- 

junction. It can  be  readily  seen  in  Fig. 4.9 t ha t   t he  magnitude  of A, increases 

with G for  both  3D-rigid  asperity and 2D-elast ic   asper i ty  cases. However, t he  

r ig id-asper i ty  model is s l i g h t l y  more influenced by G than  the elastic a spe r i ty  

model. It i s  a l so   i n t e re s t ing   t o   no te   t ha t   t he   p re s su re   pe r tu rba t ion  A is 

depending  exponentially on the  pressure-viscosi ty   coeff ic ient .  This is  somewhat 

expected  since  pressure is  d i r ec t ly   po r t iona l ly   t o   t he   v i scos i ty .  

-5 - 

S 

(4) Effect  of X3 

With PHz= .003, ho/R = 10 , G = 100, ?; = 1/32,c /h =0.3, Fig.(4.10) shows -5 
I O  

t he   r e l a t ion  between As and X3, the   locat ion of the  center  of the  asper i ty .  

Qual i ta t ive ly ,   the   e f fec ts  on As due to   r i g id  and e l a s t i c   a s p e r i t y  have  the same 

trend. The magnitude of As increases as X moving toward the  center  of  the con- 

tact.  This  trend is certainly  expected,  since a higher   pressure  level   inevi tably 

would l e a d   t o  a s t ronger   asper i ty   interact ion,   hence  higher   pressure  per turbat ion.  

3 

(5) Effec t  of 5; 

Fig. (4.11) 

h d R  = 10 , G = -5 

trend is seen   t o  

shows the   e f f ec t  of 5, aspe r i ty   s i ze ,  on A, f o r  P = 0.003, 

100, X3= -0.5, cl/ho= 0.3. From the  two curves shown, a similar 

e x i s t   i n   t h e   r e l a t i o n  between A, and the   a spe r i ty   s i ze   fo r   bo th  

Hz 

. _" .. 
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t he   r i g id  model  and t h e   e l a s t i c  model. In  both cases, As increases   with  the  asper i ty  

s i z e ;  however, the   increase   in  A is much la rger   in   the   case  of rigid  asperit iy . . :, 

model t han   t ha t   i n   t he   e l a s t i c - a spe r i ty  model. 

S 

. ,  

( 6 )  Effect  of  cl/ho 
. .  

With PHz= .003,  ho/R = 10 , G = ZOO, X3= ,-0.5, b = 1/32, F,ig.  (4.12) shows -5 - 
t he   e f f ec t  of asperity  height,   cl /ho,  on As -f,or  both  3D-rigid-asperity and 2D-elastic 

a spe r i ty  models. It is readi ly   seen  that   the  two curves  almost  coincide w'ith each I 

other  and.  the  magnitude of A for   both cases increases  with cl/ho. , As cl/ho 

becomes la rger ,   the  two curves   begin   to   d iver t   s l igh t ly .  7 

S 

(7) Effect  of y 

As def ined   ea r l i e r ,  y is t h e   r a t i o  of ha l f  of the   asper i ty   l ength   to   ha l f  of 

the  asper i ty   width,  known as t h e   e l l i p t i c i t y   r a t i o  of the  asper i ty .  As the  2 D  

e las t ic  asper i ty  model on ly   descr ibes   s t ra ight   asper i ty   r idges ,   F ig .  (4.13)  only 

shows the  resul ts   for   the  3D-rigid-asperi ty  model. It is seen  that   the magnitude 

of As increases  with y as expected. When y is  less   than 1, As increases  sharply 

with a small increase   in  y .  As y becomes la rger   the  change of As becomes much more 

gent le .   In   fac t ,   fo r  y > 5, the change of y is  prac t ica l ly   negl ig ib le .  

( 8 )  Effect  of S l ide   to   Rol l   Rat io  S 
" 

Fig.  (4.14) shows the   e f f ec t  of S on As f o r  PHz= .003, G = 100, ho/R =' 

X3= -0.5, ?; = 1/32 and cl/ho= 0.3. For y = 1,2 and  10, As decreases' when S inereases 

from -2.0 t o  0.3, and then  increases when S increases from 0.4 t o  2.0. These trends 

show t h a t  between S '= 0.3 and  0.4, the  perturbed  pressure A .reaches a minimum. 

This phenomenon can  be  explained by Fig.  (4.15) i n  which the  perturbed  pressures 

S 

@ around the   asper i ty   cen ter  are p lo t t ed   fo r  S = 0.3 and S = 0.4. In   the case of 

S = 0.3, the  value of 9 is mostly  negative  for  x/b' 5 0, and pos i t i ve   fo r   x /b '  2 0. 
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In the  case of S = 0.4, the  pressure  exhibits  an  opposite  trend. Thus, one would 

expect   that  between S = 0.3, and 0.4, the   t rend  for  @ begins   to   reverse   i t se l f .  
- 

With PHz, ho/R, X3, b , c  /h and y having  the same values as those  used  for 
- 

1 0  

Fig. (4.14), Fig. (4.16) shows the   e f f ec t  of G on S. For G = 100  and 500, the  

qua l i ta t ive   t rends  of As versus S are the same. However, f o r  G = 100, the  minimum 

6, is located between S = 0.3 and 0.4, whereas, f o r  G = 500, the minimum A is 

s h i f t e d   t o  a pos i t ion  between S = 0.1 and 0.2. Thus  when the magnitude  of G is 

increased,  the minimum As is sh i f t ed  toward the  asperity  center.   This  agrees  very 

well with Lee and Cheng's [5] r e s u l t s   i n  which the  G value is equal   to  3180, the 

perturbed  pressure is negl igibly small when S=O. 

S 

The pressure  prof i les   obtained from the smooth fi lm  theory and the  per turbat ion 

theory are compared in  Fig. (4.17). Again, i t  shows t h a t   i n   t h e  case of pure   ro l l ing  

(S-0), the  perturbed  pressure can  be neglected.  For IS1 = 2,  the  perturbed  pressure 

is r e l a t i v e l y  more important. 
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4.5 CONCLUS IONS 

The per turbed  pressure  dis t r ibut ion around  an e l l i p so ida l   a spe r i ty   t i p   w i th in  

an EHD line  contact  can  be  calculated by solving  the  perturbed Reynolds equation 

based on the  assumption of a r ig id   asper i ty .  The magnitude  of the  perturbed  pres- 

su re  A was found t o  be a function of the  following  dimensionless  variables: The 

Hertzian  pressure, PHz, the  smooth f i lm  center   f i lm  thickness  ho/R, the  pressure 

viscosity  parameter G, the   pos i t ion  of the   asper i ty   cen ter  X3, t he   s i ze  of the  

asper i ty  ?;, the   height  of t he   a spe r i ty   c l /ho ,   t he   e l l i p t i c i ty   r a t io  y and t h e   s l i d e  

t o   r o l l   r a t i o  S. A was shown to  increase  with  an  increase of P G, ?;, cl/ho, y ,  

or  X3. However, i t  decreases as ho/R increases. The manner i n  which As varies with 

S is dependent upon the  pressure  viscoisty  parameter G. For a la rge  G, As is a t  

its minimum  when S approaches  zero  (pure  rolling  condition); i t  increases as the 

magnitude of S increases.  For a small G ,  the  value of S a t  which As reaches a 

minimum s h i f t s  from ze ro   t o  some small posi t ive  values .  

S '  

s Hz ' 

A comparison w a s  made between the  resul ts   obtained by the  per turbat ion  analysis  

based on  an e l l i p so ida l   a spe r i ty   fo r  y = 10 and S=2, and those  obtained by the  2D 

asper i ty   ana lys i s .  The Comparison indicated  that   the   per turbat ion  analysis  which 

ignored   the   loca l   e las t ic   e f fec t   y ie lded  a very good approximation on the magnitude 

of  the  pressure  f luctuation  for  certain  cases,   provided  that  ho/R 2 10 , -5 

1/32. Beyond these  l imitat ions,   the  

the  pressure  f luctuat ion.  

PHz 5 0.003, G - 100, cl/ho 5 0.3 and E 
perturbat ion  analysis  would over-es timate 

/ 

I 

" 
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Figure 4-1 Two Lubricated Rollers and the Equivalent Rol1,er-Plane System 
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Figure 4-3 One-Dimensional Grids for Smooth Contact 
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Figure 4-4 Two-Dimensional Grids for  Rough Contact 
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Fig.  4-6 The Effect  of  the Nominal EHD Center F i l m  Thickness, 
h. /R, on the Double Amplitue of the Perturbed Pressure, 
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Fig. 4-7 The Effect of the Normalized Hertzian  Pressufe, 

pHz= PHz/E ' 9 on AS~P,: &-;, , for ho/R = 10 
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Fig. 4-11 The E f f e c t  of t h e   A s p e r i t y   S i z e ,  = b'/b,on As:IrrE$m;" 
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CHAPTER V 

THE EFFECT  OF  SINUSOIDAL  WAVINESS ON THE PRESSURE 

FLUCTUATION W I T H I N  THE HERTZIAN CONTACT 

5.1 Introduction 

In  the  previous  chapter ,   the  emphasis  has  been  placed  on  the  pressure 
, ,  

perturbation  around a s ing le   a spe r i ty .  Such analysis  ,with a s i n g l e  

a spe r i ty  is  usefu l   on ly   in   de te rmining   qua l i ta t ive ly   the   e f fec ts  of 

aspe r i ty  geometry,  lubricant  property,  speed, and load upon the  per- 

turbed  pressure  amplitude;  but it is  n o t   s u i t a b l e   i n  making quantita- 

tive predic t ions  of pressure  f luctuat ions  within  these  contacts .   In  

o rde r   t o   s imu la t e   t he   e f f ec t  of continuous  transverse  ridges  on  the 

pressure  f luctuation  in  an  elastohydrodynamic  contact,  one may assume 

these  ridges  can  be  represented by a s e r i e s  of sinusoidal  waviness. 

In  the  case  the  surface  roughness i s  located on the   s t a t iona ry   su r f ace  

only,   the  pressure and  deformation  profiles become time-independent, 

and  one can  modify  the method descr ibed   in  [22] t o   s o l v e   f o r   t h e  com- 

pa t ib l e   p re s su re  and f i lm  thickness   prof i les .  The a n a l y s i s   i n   t h i s  

chapter is  confined t o   s e e k   t h e  EHD performance a t  t h e   i n l e t  of a 

Hertzian  contact  with a sinusoidal  roughness on the   s ta t ionary   sur face .  

5.2 Mathematical  Formulation 

The roughness model is  assumed t o  be  continuous  transverse  ridges 

which  can  be  represented by a s i n e  w a v e  on the   s t a t iona ry   s ide  of t h e  

contact. Thus the   a spe r i ty   he igh t  6 ,  is  a function of x only. There- 

f o r e  one would ob ta in   t he   r e l a t ions  

b = cl/he s in(2n  nX) 
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where Q - 6/he 
1 1  n - - x -  4 b'/b or  

X - x/b 

h - center  film  thickness of the  smooth-film EHD contact 

c1 - maximum asperity  height 

b' - half of the  asperity  width 

b - half of the  Hertzian  contact  width 

x - coordinate  axis  along  the  sliding  direction 

The Reynolds equation and the  elasticity  equation  are  respectively 

where 

2 
1 - v1 

Pm - Pm/E's 
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Using t h e  same numerical scheme s t a t e d   i n  [221, P(X), H (X) and U are 

so lved   for  a given set of  non-dimensional va r i ab le s ,  namely  nominal 

center   f i lm  thickness  h /R, Hertzian  pressure PHz, p re s su re   v i scos i ty  

parameter G, maximum aspe r i ty   he igh t  c /h and asperity  width  b ' /b.  

T 

0 

1 0  

5.3 Discussions  of  Results 

The e f f e c t  of the  pressure  viscosi ty   parameter  G, t h e  maximum aspe r i ty  
. < ,. 

height  cl /ho,   the  asperity  width  b ' /b,   the  nominal  center  f i lm  thickness 

h d R ,  and the  Hertzian  pressure P on the  magnitude of the  per turbed Hz ' 
pressure,  (which i s  defined as the   d i f fe rence  between the  maximum 

and the  minimum pressure  r ipples   deviated from the  nominal  smooth-film 

AS 

pres su re   p ro f i l e ) ,  and the   ac tua l   p re s su re   d i s t r ibu t ion  w i l l  be  discussed 

in   the  fol lowing  sect ions.  

5.3.1 The Effec t  of Pressure  Viscosity Parameter G 
" -. . . . . 

For PHz= 0.003,  hJR = cl/ho = 0.3  and n = 2(b ' /b  = 1/8). Fig. 

(5.1) shows t h e   e f f e c t  of G on As. S i m i l a r  t o   t he   r e su l t s   ob ta ined   fo r  

t he   s ing le   a spe r i ty   r i dge   i n  an EHD contact,  as discussed  in  Chapter I V Y  

the  magnitude  of A increases  with G f o r   t h i s  case with a waviness  sur- 

face   p rof i le .  With the  same set of values   for  P ho/R, cl/ho  and 

b ' / b ,   t he   e f f ec t  of G on the   p re s su re   p ro f i l e  is shown in  Fig.  (5.2). 

As expected,  the  pressure  f luctuation from the  nominally  smooth-film 

S 

Hz ' 

p r e s s u r e   p r o f i l e  is more pronounced when the   va lue  of G .is l a r g e r  and 

within  the  Hertzian  contact zone.  Since G represents  a s i g n i f i c a n t  

parameter ,   the   effects  of. other  parameters on A are compared i n   t h e  

subsequent  sections  for G = 100  and G = 1,000. An attempt w a s  made f o r  

S 

cases with G greater  than  1,000, some of t h e   s o l u t i o n s   f a i l e d   t o  converge. 
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5.3.2 The Effect of cl/ho 

The asperi ty   interact ion  wil l .be more severe when the  amplitude of 

the  asperity is  larger. This phenomenon has  been shown ea r l i e r   i n   t he  

single  asperity-ridge  analysis and is exhibited  again  here  in Fig. (5.3) 

for  the  case of wavy surface roughness  with PHz= 0.003, ho/R = 10 , and 

n = 2(b'/b = 1/8). For both  cases  with G = 100  and 1,000,  the magnitude 

of the  perturbed  pressure  increases  with  the  ratio c /h This phenomenon 

can also be  observed i n  Fig. (5.4) with G = 100  and Fig. (5.5) with 

, .  
-5 

J , i :  / ,  8 

1 0. 

G = 1,000 i n  which the  perturbed  pressure  profiles  are shown. 

5.3.3 The Effect of n 

For PHz= .003, h /R = lo-' and cl/ho =.0.3, Fig. (5.6) shows the  effect  
0 

of n on the magnitude of the  perturbed  pressure A for  both G = 100  and 

1,000. It seems that  the two curves shown here do not have the same 

S' 

qualitative  trend. However, i t  is believed  that  the  further  increase  of 

n for  the  case  with G = 1,000 w i l l  decrease  the magnitude of As due t o  

the   e las t ic   e f fec t ,  so that   the shape of the  curve  in  this  case w i l l  be 

similar  to  that   with G = 100. 

Let ' s   recal l   that  n = 1/4   xb /b ' .  Thus increasing  the  value of n 

implies the  closer  the  distance between the  center of each individual 

asperity  ridge and the  center of the EHD contact.  Therefore  the  effect 

of n actually  consists of the  effects of e l a s t i c  deformation,  the  ratio 

b ' / b  and the  distance between the  individual  asperity  center and the 

contact  center . 
The perturbed  pressure  profiles  for G = 100 and 1,000, due to   the  

e f fec t  of n,  are shown in  Figs. (5.7) and ( 5 . 8 )  respectively. The 

results  obtained  for  these two cases  are  the same qualitatively.  For 
. _  
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G = 1,000 i n  which t h e  elastic e f f e c t  is more severe, the  magnitude of 

the  pressure  r ipple   deviated from the  nominally  smooth-film  pressure 

p r o f i l e  i s  much larger  than  those  with G = 100. 

5.3.4 /R Effect 
. .  

The e f f ec t   o f  h /R on t h e  magnitude  of the  per turbed  pressure As, f o r  
0 

both G = 100  and  1,000 are shown i n  Fig. (5.9). In   t hese  examples, t he  

value's  of P cl/ho, n and b ' / b  are 0.003, 0..3, 2 and 1/8 respectively.  ' 

It is observed  that  the  magnitude  of As increases   wi th   the   ra t io  h /R. 

This increase is l a rge r  when t h e  magnitude  of G is la rger .  

, .  ' i : .  ._. . - . 

Hz ' . . ,  . .  

0 
I 

I n  Chapter I V ,  it has  been shown t h a t   t h e  magnitude  of As decreases 

with  the  increase  of ho/R when the re  i s  a s i n g l e  3 D  r ig id   a spe r i ty   w i th in  

the  contact  zone. This  opposing  trend  between  the case of a s i n g l e  3 D  

r i g i d   a s p e r i t y  and cont inuous  e las t ic   asper i t ies   can  be  explained-   in   the 

f o l  lowing manner: - .  , 

I n  _the case  of  sinusoidal elastic ,asper i t ies ,   the   pressure  ampli tude . 

is reduced by the   l oca l  elastic deformat ion   of ; the   asper i ty .   I f  cl/ho 

is he ld   cons tan t ,   the   reduct ion   in   p ressure  due t o  l oca l   e l a s t i c   de fo r -  

mation becomes much g rea t e r  as h /R decreases,  because a t  a smaller h /R, 

it requires   only a very small pressure   ampl i tude   to   f la t ten   ou t   the  

asperi.ty.  This phenomenon of elastic e f f e c t  i s  b e s t   i l l u s t r a t e d  by 

Fig. (5.10)  which shows the  per turbed  pressure and s u r f a c e   p r o f i l e s   f o r ;  

ho/R: = 10 , 5 x 10 and respec t ive ly . ,   fo r   the   s inusoida l   e las t ic  

a spe r i t i e s   w i th  G = 100. The shapes of these  perturbed  pressure and 

s u r f a c e   p r o f i l e s  are consis tent   with one another.  However,.the smaller.. 

the  ho/R, the  more the   a spe r i ty  be-ing f la t tened  out .   For   the case of a 

3D r i g i d   a s p e r i t y ,   t h e . e f f e c t  of loca l   e las t ic   deformat ion  is ignored, 

and thus  the  opposing  trend i s  found. 

0 0 

-5 -6 
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The perturbed  pressure and su r face   p ro f i l e s   fo r   t he   s inuso ida l  elastic 

a spe r i t i e s   w i th  G = 1,000 are shown in  Fig.  (5.11). The r e s u l t s   f o r  

both G = 100 and 1,000 are shown t o  have  the same c h a r a c t e r i s t i c s  and 

the  magnitude  of As is la rger   wi th  G = 1,000 as expected. 

5.3.5 PHz Ef fec t  

For h /R = lom5, cl/ho = 0.3, n = 2 and b’ /b  = 1/8, t h e   r e s u l t s  of 

the  magnitude  of  the  perturbed  pressure A versus  the nominal value  of 

t he  maximum Hertzian  pressure P are shown i n  Fig. (5.12). It is  

readi ly   seen  that ,   for   both  cases   with G = 100 and 1,000,  the  increase 

0 

S’ 

Hz ’ 

i n  P r e s u l t s   i n  a decrease   in  A . This phenomenon is  due t o   t h e  

reduction of the  pressure  amplitude  caused by t h e   l o c a l  e las t ic  defor- 

mation  of  the  asperity. The l a r g e r   t h e  PHz, t h e  easier the   asper i ty  

being  f la t tened,  and thus  the  smaller  the As. 

Hz S 

The per turbed  pressure  prof i les  are shown i n   F i g s r  (5.13)  and  (5.14) 

respectively.  The r e s u l t s   f o r  G = 100  and 1,000 are found t o  have  the 

same t rend   qua l i ta t ive ly .  As expected,  the  magnitude of As is l a rge r  

in   the   case  of G = 1,000. In   addi t ion   the   per turbed   sur face   p rof i les  

for   the   case  of G = 100 as shown in  Fig.  (5.13) i l l u s t r a t e s   t h e   e f f e c t  

of the   loca l   e las t ic   deformat ion  of t he   a spe r i ty  as explained  previously. 

It te l ls  tha t   t he   l a rge r   t he  PHz, t h e  more severe the  asper i ty   being 

deformed. 
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I 
5 . 4 'CONCLUS IONS 

In  the  case  of  the  simple  sl iding of a smooth surface  against  a 

s ta t ionary  rough  one, the  magnitude of the  pressure  deviat ion from the  

nominally  smooth-film p r o f i l e  and the  per turbed  pressure  prof i le   in   the 

i n l e t  of an  elastohydrodynamic  contact,  can  be  determined  quantitatively 

when the undeformed  rough sur face   p rof i le  is given. 

In   the  examples given in   th i s   chapter ,   the  undeformed  rough surface 

p r o f i l e  is simulated by continu'ous transverse  ridges  represented by a 

series of  sinusoidal  waviness. The e f f ec t  of the  following non- 

dimensional  parameters on the magnitude  of the  pressure  f luctuat ion As 

and the  perturbed  pressure  profile are obtained:  the  pressure  viscosity 

parameter G,  the  maximum height  of  the  asperity  cl/ho,  the number of 

wave cycles  within  the  contact  zone,  n, (which in  turn  determines  the 

width of the   asper i ty ,   b ' /b ) ,   the  nominal  smooth-film  center  film  thick- 

ness ho/R and the  Hertzian  pressure PHz. 

The e f f ec t s  of G ~6 c /h on the  magnitude of As for   this   case  with 1 0  

a waviness  surface  profile  have  the same charac te r i s t ics  compared t o  

those  obtained  for  the  single  asperity  r idge  in an EHD contact as pre- 

sented  in  Chapter TV. Nqmely, the magnitude of As increases when the 

magnitude of G o r  c /h increases. L o  
The r e su l t s  of As versus PHz and h /R a r e  found t o  be consis tent   for  

both G = 100  and 1,000. The magn-ltude of As decreases as the  magnitude 

of PHz o r  h /R  becomes larger.  These r e s u l t s   f o r   t h e  waviness surface 

p r o f i l e  have the  opposing  trend when compared to  those  obtained by the 
0 

3D r igid  asper i ty   analysis .  The reason  for  the  opposing  trend is due t o  

the  pressure  reduction  caused by the   loca l  elastic deformation of the  

a spe r i ty   fo r   t he  waviness  surface  profile, whereas the   e f f ec t  of loca l  

e l a s t i c  deformation is ignored  for a 3D r ig id   asper i ty .  
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The ef fec t  of the number  of  wave cycles  within  the  contact zone on 

the magnitude of the  perturbed  pressure As is found t o  be  very compli- 

cated. The loca l   e las t ic   e f fec t ,   the   ra t io  b,'/b, and the  distance 

between each individual  asperity  center. and the  contact  center are 

important  factors  affecting  the magnitude  of As caused by changing the 

magnitude of  n. 
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where M is defined by Eqs . (2.7) and (2.10). Hence M is a constant of x. However, 

t h i s  ' constant  can  be a s tochas t i c   quan t i ty   i n   t he  time domain. 

EHD Contact 

Re-arrange Eq. (2.10) to   ob ta in  

M u1 + u2 h 
12Ps 2 

- +  
hT 

2 

A t  x = - m, t he   a spe r i ty   e f f ec t  is negl ig ib le  so t h a t  q = p = 0. However, the 

pressure  p ,  must reach a s ign i f i can t   f r ac t ion  of the  Hertzian maximum at  x = - 1, 

such  that  e'cyp << 1, i.e. q fi: .& . Therefore  q a t  x = - 1, can  be assumed t o  be a 

stochastic  variable  with  extremely small variance.   Integrate Eq.  (A.2) from 

x = - w t o  - 1, and obtain 

cy 

As M is a constant of x, Eq. (A.3) can  be  re-written as 

h 61 + 62 -1 
dx + ? J  + %  - 62 

dx 
-0) -0 

M = 
-1 

1 

When there  are enough asper i t ies   wi th in   the   contac t   zone ,   the   in tegra ls   in  Eq.  (A.4) 
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are independent of the  precise  arrangement  of  the  roughness and also  independent 

on time.  Therefore M can  be assumed to   be  a s tochast ic   quant i ty   with  zero  (or  

negligible)  variance.  

Rigid  Rollers 

Eq. ( 2 . 7 )  can  be  re-written as 

Integrate  Eq. ( A . 5 )  with  the boundary conditions: 

p = o  a t  X = - m  

p = 9 . = 0  d 
dx 

one obtains 

a t   x = x  
* 

X 

Even though x i s  a random quantity,  i t s  deviation from the mean i s  expected  to 

be of the same order of the  wavelength of the   asper i ty ,  and i s  small compared 

wi th   the   s ize  of the  bearings. The i n t e g r a l s   i n  Eq.  (A.7) a re   on ly   s l i gh t ly  

affected by x , and therefore  can  be  considered  as  stochastic  quantit ies  with 

* 

* 

negligible  variances.  Thus, M i s  a l so  a s tochast ic   quant i ty   with  negl igible   var iance.  
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Infinitely-Wide Slider 

Integrate Eq. (A.5) with the  boundary  conditions: 

P'O at x = 0 and L 

one  obtains 

- ti1 + ti2 

3 
0 h, 

dx 

Following  the above argument, M is also a stochastic  quantity with zero (or 

negligible)  variance. 
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APPENDIX B 

FORTRAN IV  LISTINGS OF  COMPUTER  PROGRAMS 

1. PROGRAM ROLSLIP: This  program  which is used i n  Chapters I1 and 111, 

is to ca lcu la t e   t he   i n t eg ra t ed   p re s su re  a t  t h e   i n l e t  of an EHD 

contact  with random surface  roughness by t h e   s t o c h a s t i c  approach. 

2. PROGRAM RIGROL7: This program  which is  used i n  Chapter 11, is t o  

compute the  load  of a r ig id   ro l l e r   bea r ing   w i th  random sur face  

roughness  by  stochastic  approach. 

3. PROGRAM SLIDER5: This program  which is used i n  Chapter 11, i s  t o  

compute the  load of an   in f in i te ly-wide   s l ider   bear ing   wi th  random 

surface  roughness by stochastic  approach. 

4. PROGRAM DAPOL2: This  program  which is used i n  Chapters I1 and 111, 

i s  to   genera te   da ta   for   func t ions  G G and G for  the  correspond- 

ing  a/ho. These d a t a  are input   to  programs ROLSLIP, RIGROL7 and 

SLIDER5. The data   for   funct ions G 2 ,  G and G i n   t he   ca se  when 

the   asper i ty   he ight   d i s t r ibu t ion   func t ions  are i n   t h e  form  of 

polynominal  function as wel l  as s inusoidal   funct ion are tabulated 

respectively.  

2’ 4 5 

4 5 

5 .  PROGRAM  ROLWAVl: This program  which i s  used i n  Chapter 111, is t o  

compute the   in tegra ted   p ressure  a t  t h e   i n l e t  of an EHD contact  with 

waviness  surface  roughness by the   de t e rmin i s t i c  approach. 

6 .  PROGRAM ASPERITY: This  program  which is used in  Chapter I V ,  is 

t o  compute the   per turbed   pressure   d i s t r ibu t ion  due t o  a s i n g l e  

3D-Rigid Asperity. 
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PFiOGRAI.; H I G R O L  I ( LNPUTIOUTFUT) 
C 
C THIS PROGRAY is TO  COMPUTE TI -€  L O A 2  O F  A R I G I D   R O L L L R   B E A R I h i G  BY S T O C C A S T I C  
C APPROACt- 
C 
C T H I S  P R O G R W  COh!SIbTS OF 4 S U H H O U T I N E S  
C 1 - S U H R O b T I K E   T A S L E  IS 'io 5 L T   U P  A PkESSURE  ARRAY  CORRESPONDING T O  THE GRID 
C P O S I T I O ? \ S  
C 2 - S U d R O U T I N E  CON> IS TCi CPLCULATE  THE  CONSTANT C 
C 3 - S U i l P O U l I N E  FUkC I S  T G  E V A L U A I E   F U N C T I O N S  F l t  F Z ,  AND F 
C 4 - S U 6 R O U . i I N E   I N T   I S  n S l M F C U N   I I ~ T E G R A T I O N   H O U T I N E  TO COMPUTE  THE  LOAD W ( K ~ ( )  
C T H E   O U T P U T   O F   T H I S  FHGGciAM IS w ( 1 )  PND THE  CORRESPONDING DSIG(1) 
C 
C DATA CARD 140. 1 
C P d I  = hi0. OF  UNIFORb!  GAIDS FKUM X = - 1  TO X=O 
C N F  = NO. OF UNIFURt4 GWIOS FFUM A = O  TO  X=XA 
C K O = h ' L  + A 
C K F = k F + i  
C NC = NO. OF DSIG(I) D A T A  
C D A T A  CARD 140. 2 
C X A ( ~ ) . X A ( ~ )  I i J I T I a L   V A L U E S   P C S I G N E D   T O   X A ( I ) r   A S S U M I N G   T H A T   T H E   P R E S S U R E  AT 
C T H I S   L O C A T I G P I  IS i). 
C HO = CEhTEFi FILM T h I C K N E S S  
C S L I P  = SiIPFAbF C G E F F I C I E h 7  
C P I  = 3.14i553 
C DATA  CARD NC.  3 
C U S I G ( 1 )  = S I G M A  / ti0 9 D A T P  
C DATA  CAQD lu0. 4 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
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PROGWAW S L I D E R > ( I N P ~ T I O U l F U T )  
C 

C STOCHASTIC  APPROACH 
C 
‘C T H I S  PROGRAP  CONSIST^ OF 3 SUi3HOUTINES 
C 1 - SUaROCiTII \ IE  TAYLE IS TO FORM TH€ T l r   T 2 9   T 3  ARRAYS  WHICH kILL YE USED To 
C COMPUTE  THE PRESWt4E P K O F I L E  
C 2 - S U i j R O U T I h E   F U N C  15 TO E V A L c l L l E   T H E   F U I u C T I O N S  F l r  F2 AND F3 
C 3 - S U n R O U r I N E   I N 7  IS T h E   I h T E G d A T I O N   R O U T I N E   T O   C A L C U L A T E   T H E   P R E S S U R E  
C P R O F I L E  AND  TWEN T n E   T O T A L  LOAD 
C THE  OUTPUT OF T H I S  PHOURAM  AGE,   wL0AD1 9 WLOAD2 r WLOAD3  AND  THE CORRESPONDIRG 
c USIGII) 
C H’LOADI  = L O A D  Ah S L I D I b i G  GOUGH S U P F A C E r F I X E D   S M O O T h   S U R F A C E   C A S E  
C WLOADZ = L O A D  l k  F I X E C  kCL6l-1 SUi?FACE,SLIDIhG SMOOTh SURFACE  CASE 
C k L O A D 3  = L O A D  i t ,  B O T H   S U E F A C E S   M I T H   S A M E   R O U G t i N E S S   D I S T R I B U T I O N  
C 
C D A T A  CARD NO. 1 
C K F  = T O T A L  NO. OF G R l G   F i J I h T S  
C PJF = NO. OF D S I G ( 1 )   U A T A  
c P I  = 3.1415G3 
C DATA  CAQD 140. 2 
C GSIC(1) = D b T A  FUR SIGl;u / H ( H I N )   G A T 1 0  

c THIS PROGRAM IS T O  COWUTE TI-E LUAU OF AN .INFINITELY-WIDE SLIDER HE~RING B Y  

C DATA  CAQD 1 u G . 0 3  

C TFESF- DATA ARE T d E   O U T P U T   F L @ V  PKOGHAM  SUCHAS  PROGRAM  DATPOLZ  WHICP  EVALUATE 
C TI-E I h T E G 2 A L  OF ( G I ! 5 T K l a l J T I b N  F U N C T I O h o h S S ) / ( l . + S H ~ H S S ; * * 3  AND 
C ( D l S T K i P U T I O N   F U N C T I O ~ / ( 1 . + S H Q h S S ) ” 4 3  
C T n I S   D I S i A I C L i T I O l \ r   F l J N C T I C l h  CAN 6L P O L Y N O M I A L   r G A U S S I P h r   S I N U S O I D A L  OR ANY 
C OTHER F U h C T  I O N  
C D S t i f I )  = T H E   A B S C I S S A  RAlUGI,CG FROM 0 TO 0.333 
C U V ( I )  = THE hONDAMEh!S IONAL  DSH(1 )  
C UGS ( 1 )  = T H E   I N T C G k C L  OF 35/cjO* ( 1  . -HSSo*2/9)  Y ~ 3 / ( 1 + S h * H S S ) Y 0 3 * ~ S S  
C I h  THE  CASE OF P C L Y ~ C I M I B L   O 1 5 T R I d u T I O N  

C I h  THE  CASE  OF POLYIJCF* lPL  O I S T Q I d u T l O N  
C U.GS(I) = D G Z ( I ) / u G s ( I )  

C OGZ(I) = T h i   I N T L G R C L  OF ~5/S6.~(1.-~SSQQZ/91*~3/(1+sr*HSS)~03 
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101 

102 
C 
1 
2 
3 
4 
5 
6 

7 
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Data €or G2,  G4 and G5 with  polynomial distribution of the  asperity 

height.  

SH 

V 

G2 

G4 

G5 

= z/H 

= non-dimens ional SH 

= G2/G4 

SH 

0 . 0 0 0 0 0 0  
a001665 
moo3330 
w 0 04995 
~ 0 0 6 6 6 0  
moo8325 
a 0 09990 
w O  11655 
~ 0 1 3 3 2 0  
~ 0 1 4 9 8 5  
a016650 
~03.8315 
~ 0 1 9 9 8 0  
a021645 
~ 0 2 3 3 1 0  
w 0 2497 5 
w 0 2664 0 
SO28305 
~ 0 2 9 9 7 0  
~ 0 3 1 6 3 5  
~ 0 3 3 3 0 0  
~ 0 3 4 9 6 5  
w0 36630 
a038295 
w0 39960 
~ 0 4 1 6 2 5  
~ 0 4 3 2 9 0  
w 0  44955 
~ 0 4 6 6 2 0  
~ 0 4 8 2 8 5  

V 

I. 0 0  
2.00 
3.00 
4 a O O  
5.00 
6.00 
7.00 
8 . 0 0  
9.00 

10.00 
I1 . 0 0  
12.00 
13.00 
14.00 
15.00 
16.0@ 
17.00 
18.00 
19.00 
20.00 
21.00 
22.00 
23. O G  
24.00 
25.00 
26.00 
27.00 
28 . 00 
29.00 
30.00 

elsewhere 

f4 G5 

~ 0 0 0 0 0 0 0 0 C 8 ~ 7 3 5 0 8 6 2 2 . 8 9 7 2 2 6 4 2 6 3  
0049951360  -2GOwl.968247935 

0 .0099912933   -100~0931790408  
- 0  0149884332  -66  w7276896773 
-w019987€140 -50  ~ 0 4 3 9 9 3 9 1 4 7  
-w0249895170  -40~0331812483 
- w  0299948249  -33.3588560465 
O W  0350042216   -28~5911118930  
-w0400183928 -25 a0149881471 
- a  0450380259  -22.2332815146 
-.050063e108  -20.0076686839 

0550964396 -18.1664886970 
- w  0601366075 -16.6686338844 
-w0651850124 - 1 5 ~ 3 3 4 1 0 6 4 1 7 0  
-w0702461021 - 1 4 ~ 2 8 2 1 4 6 0 1 6 0  
- w  0753129297 -13.3277373166 
O W  0803901121 -1 2 w 4924672 0 77 
0.0654783624 -11 ~ 7 5 5 3 1 2 7 0 7 8  
- w  0905783984 -11 ~ 0 9 9 9 2 2 2 5 5 3  
-.0956909428 -10 ~ 5 1 3 3 8 6 4 7 1 8  
-w1008167234 -9.9853776741 
- a  1059564734 -9.5075352232 
-a1111109320 - 9  w 0730184962 
O W  1162808444 - 8 . ~ 6 7 6 1 7 6 4 6 6 4  
0 ~ 1 2 1 4 E 6 9 6 2 3  -8.3122998848 
001266700439 97.9774329347 
-a1318908551 -7.6682283475 
-a1571301688 - 7 ~ 3 8 1 8 3 4 7 1 4 9  
0.1423867658 -7 ~ 1 1 5 8 0 7 9 4 5 8  
- w  1476674354 -6.8680410430 

G2 

w 9999937040 
1 ~ 0 0 0 0 1 0 3 7 0 1  
1.0000603055 
I. 0001435203 
1w0002600317 
laOOO4O98635 
1. 0005930462 
l a  0008096174 
1a0010596214 
1. 0013431094 
1. 0016601395 
1. 0020107769 
1 ~ 0 0 2 3 9 5 0 9 3 4  
1. 0028131682 
1 ~ 0 0 3 2 6 5 0 8 7 4  
1.0037509442 
1 ~ 0 0 4 2 7 0 8 3 8 9  
1.0048248792 
1w0054131799 
l a 0 0 6 0 3 5 8 6 3 2  
1 ~ 0 0 6 6 9 3 0 5 8 6  
1.0073849032 
i. 0081115416 
la00RR731260 
1. 0096698164 
I w 0 1 0 ~ 0 1 7 R 0 4  
I. 0113691938 
lwOlP2722402 
1.0132111113 
1 ~ 0 1 ~ 1 8 6 0 0 7 1  
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a 0  4995 0 
005161'5 
a053280 
a054945 
a056610 
a 0  58275 
a059940 
a051605 
a063270 
a064935 
a066600 
a068265 
a069930 
a071595 
i o 7 3 2 6 0  
i o 7 4 9 2 5  
a076590 
a078255 
.079920 
a081585 
0 83250 

a l I 3 4 Y l 5  
a 0  96580 
a038245 
a089910 
a091575 
a093240 
a094905 
a096570 
a098235 
a 0 9 9 9 0 0  
a101565 
a103230 
a104095 
a106560 
a108225 
a109890 
a111555 
a113220 
a114885 
a116550 
a118215 
a l l 9 8 8 0  
a121545 
a123210 
a124875 
a126540 
0128205 
m.129870 
a131535 

3 1 a O O  
32.00 
33.00 
34.00 
35.00 
3 6 - 0 0  
37.00 
38.00 
390 0 0  
40a00 
41.00 
42.00 
43.00 
44.00 
45.00 
46.00 
47.00 
48.00 
49.00 
50aOO 
5 1 . 0 0  
5 2 . 0 0  
53.00 
54.00 
55mOO 
56. Of! 
57.00 
58.00 
59.00 
60aOO 
61aOO 
62aOO 
63.00 
64.00 
65.00 
66.00 
67.00 
68a00 
69.00 
70.00 
7 1 a O O  
7 2 a O O  
73.00 
7 4 0  0 0  
75.00 
76. 0 0  
77.00 
78aOO 
7 9 0 0 0  
8 0 a O 0  

- a  1529669751 
- a  1582881916 
- a  1636319007 
-a1€89989282 
-a1743901098 
-a1798062917 
- a  1852483314 
-a1907170973 
- a  1962134701 
-a2017383425 
-a2072926201 
- a  2128772216 
- a  2184930795 
-a2241411406 
- a  2298223663 
- a  2355377334 
- a  2412882345 
- a  2470  748786 
-a2528906917 
- a  2587607174 
-a2645620173 
- a 2 7 0 6 0 3 6 7 2 2  
-a2765867821 
-a2826124672 
- a  2 8 8 6  8 1  8687 
-a2947961494 
-a3009564942 
- a  3071641114 
-a3134202331 
-a3197261160 
- a  3260  83  0426 
- a  3324923217 
- a  3389552897 
- a  3454733110 
- a  3520477796 
- a 3 5 8 6 8 0 1 1 9 7  
-a3653717869 
-a3721242692 
-a3789390883 
- a  3858178006 
-a3927619904 
-a3997733116 
-a4068534063 
-a4140039967 
-a4212268264 
-04285236897 
-a4358964234 
-a4433469102 
-a4508770805 
-a4584889140 

-5.6367079229 
-6a4202181087 
-6a2171799186 
-6a0263703463 
-568467102566 
-5.6772438332 
-5a5171214518 
-5.3655853297, 
-5a2215363317 
-5aO802341398 
'Ca95085857 t l  
-4a'827.7327210 
-4a7104100548 
-4a6027585049 
-4a4957019781 
-4.3933455139 
-4.2953824033 
-4a2015320339 
-4a1115371720 
-4a0251615764 
-3.942187RQ97 
- 3 . 8 6 2 4 1 5 8 3 5 6  
-3a7856604805 
-3a7117508799 
-3a6405287375 
-3.5718412638 
-3a5055701487 

3.4415706427 
-3.3797307319 
-3a3199403982 
-3.2620969524 
-3a2061044340 
-301518730679 
-3.0993187738 
-3a0483627208 
-2.9969309240 
-2a9509538769 
-209043662172 
-2.0591064219. 
-2a8151165293 
-2e7723418840 
-2a73073090b3 
-2.6902348667 
-206508077195 
-2a6124058831 
-2a5i'49081030 
-2a5385152910 
-2a5029503817 
-2a4682502034 
-2.4344053612 

l a  0151971358 
l a  P 1 6 2 4 4 m + l  
l a  0173269673 
l a  0184501295 
la0196084435  
l a  0208041609 
1 9  0220 375429 
le0233088596  
l a  0 2 4 5 3 5 7 6 3 1  
l a  024878OiS i  
i a  0262764462 
l a  0277143282 
l a  0291919985 
l a  0316675410 
l a  0332128666 
l a  0347986442 
l a  03E4252365 
l a  0380930172 
l a  0398023717 
l a  0415536970 
l a  0433474022 
l a  0451839087 
l a  0470636503 
l a  0489670739 
l a 0 5 0 9 5 4 6 3 9 1  
l a  0525668195 
l a  0550241022 
l a  0571269883 
l a  0592759937 
l a  0614716488 
l a  0637144994 
l a  0660051069 
l a  0683440486 
l a  0707319187 
1.0731693274 
la0756569029  
l a  0781952911 
l a  0807851561 
l a  0834271808 
l a  0861220677 
l a  0888705387 
l a  0916733368 
1.094531-2255 
la0974449905  
l a  IO04154394 
l a  1034434032 
l a  1065297365 
I* IO96753182 
1*1128810527 
i e 1 ~ 6 1 4 7 8 7 O 3  
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0133200 
0134865  
0136530 
a138195 
0139860 
0141525 
a143190 
0144855 
0146520  
0148185  
e149850 
. I 5 1 5 1 5  
0153180 
0154845 
. I56510  
0158175 
. I59840  
0161505 
0163170 
0164835 
m166500 
0168165 
0169830 
0171495 
0173160  
0174825 
e176490 
0178155  
0179820 
0101485 
0183150  
0184815  
e186480 
0188145 
o189810 
0191475 
0193140 
0194805  
0196470 
0198135 
0199800 
m201465 
0203130  
020.4795 
0206460  
0208125 
0209790 
0211455  
0213120  
a214785 

81000 
8ZoOO 
830 0 0  
84.00 
85.00 
860 0 0  
87.00 
88.OO 
8 9 0  0 0  
90.00 
91.00 
92.00 
93.00 
94.00 
95.00 
96.00 
97.00 
9 8 . 0 0  
99.00 

1 0 0 0 0 0  
1 0 1 0 0 0  
1 0 2 0 0 0  
10 30 00 
104 .00  
105mOU 
106.00 
107.00 
108.00 
109.00 
1 1 0 . 0 0  
i l l . 0 0  
112.00 
113mOO 
114.00 
115.00 
I 1 6 0  0 0  
1 1 7 0 0 0  
l18 .00  
I 1 9 0  00 
120000 
121mOO 
122.00 
123.00 
124.00 
125.00 
126.00 
127.00 
1 2 8 a O O  
i 29 .00  
130.00 

- 0  4661  844416 
9 .  4739057472 
-m4818 j4969? 
-04897943053 
-m4978460090 
-05059923974 
- .5142358509 
- m  5225780159 
-05310238076 
-05395734124 
-.5482302910 
-.55699718a7 
- 0  565  876  8992 
- 0  5748723473 
-m5839865120 
-m5932224706 
-a6025833939 
- .6120725501 
-06216933087 
- 0  6314491450 
-06413436442 
-a6513805062 
-a6615635504 
-a6718967209 
-e6823840917 
-06930298724 
- .70383a4143 
-m7148142166 
o m  7259619328 
- 8  7372863781 
-m7487925362 
0.7604  855676 
- .7723708173 
-m784k538238 
-o7967403281  
- 0  8092362631 
- 0  8219470646 
- a  8348814812 
-m8480437964 
-0P614416905 
- 8  8750 823736 
- 8 8 8 8 9 7 3 2 9 9 5  
-.9031222298 
- .9175372398 
- m  9322267347 
-e3471994673 
- 8  9624645568 
-.9780315083 
em9939102345 

-1.0100755107 

-2.4013601233 
-203690923186  
-2.3375732418 
-203067755645  
-202766732533 
-2.2472414935 
-2 m2184566178 
-201902960406  
9 2 0 1 6 2 7 3 8 1 9 6 1  
-201357624808  
-2.1093491998 
-200834795170 
-200581354079 
-200332996159 
-2.0089556112 
-1 .ga50875521 
- l a 9 6 1 6 0 0 2 4 9 5  
-1.9387191326 
-1,9162541838 
-1.8941383901 
-1.8724283612 
-1.8511116757 
-1.3301764135 
-1m8096111019 
~ 1 . 7 3 9 4 0 4 7 0 0 0  
-1.7695465774 
-1 m7500264946 
-1 m7308345845 
-1.7119613347 
-1 a6933975710 
0106751344411  
-1.6571634006 
-1.6394761979 
-106220648613 
-106049216864  
-10588039223b  
- 1 0 5 7 1 4 1 0 2 6 € 3  
-1.5550278414 
-1.5388851972 
-1.5229757946 
-1.5072932976 
-104918315618 
-1 04765846316 
-1 04615467257 
-1 04467122327 
-1.4320757029 
-1m4176318408 
-104033754984 
-103893016685 
-1.3754539099 

10 I 1 9 4 7 6 7 2 8 1  
1 0  1228686109 
i o  1263245322 
1 0  I 2 9 8 4 5 5 3 5 0  
1.1334326929 
I. 1370871108 
l e  I 4 0 8 0 9 9 2 6 5  
1.1446023114 
1. 148465471 8 
1.1524006499 
1.1564091255 
l m l 6 0 4 9 2 2 1 7 0  
l a  1646512829 
1.1688877229 
1 0  1732029801  
1.1775985421 
1.1820759426 
1.1866367633 
I .  1913224030 
l a  1960520706 
1 0  2008700286 
1. 2 0 5 7 7 8 0 6 0 3  
l a  2107780060 
l o 2 1 5 8 7 1 7 6 5 6  
1. 2210613009 
l e  22E3486387 
1.2317358729 
l o 2 3 7 2 2 5 1 6 7 5  
1 0  2428187595 
1. 2485189617 
10 2543281667 
1 . 2 6 0 2 ~ 8 a 4 9 3  
1 0  2662835709 
1. 2724349830 
l a  2787058309 
1.2850589587 
1.2916173126 
l r  2982639475 
l r  3050420294 
Ir3119548430 
1. 3190057961  
l e  3261984258 
1. 3335364049 
l a  3410235485 
1. 3486638207 
l a  3564613430 
1.3644204014 
1.3725454555 
1. 3608411471 
1. 3893123104 
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0216450 
0218115 
02 197 8 0 
0221445 
0223110 
0224775 
0226440 
0228105 
0229770 
023143s 
0233100 
0234765  
0236430 
0238095 
0239760  
0241425  
0243090 
0244755 
0246420 
m2k8085 
0249750  
0251415 
0253080 
a254745 
0256GIO 
0258075 
0259740 
0261405 
0263070  
0264735 
0266400 
0268065 
a269730 
0271395 
0273060 
a274725 
0276390 
0278055 
0279720 
0281385 
0283050 
0284715  
0286300 
0288045  
0289710 
0291375 
0293040 
0294705  
0296370 
0298035 

-10 0266066512 
-100434818142 
-110607127742 
-100783118426 
0 . 1 0  0962918997 
0 1 0  1146664290 
-101334495539 
~ 1 0 1 5 2 6 5 6 0 7 7 1  
-101723015235 
- 1 0  I 9 2 4 0 2 1 8 5 5  
- 1 0  2129751731 
-102340384668 
-10 2556109760 
- l a 2 7 7 7 1 2 6 0 0 9  
-103003643011 
- l a 3 2 3 5 8 8 1 6 8 3  
-103474075073 
-103718469225 
-103969324127  
-104226914752 
-104491532185  
-1.4763484864 
-105043099939 
-105689740923 
-105626728537 
- l a 5 9 3 1 5 0 8 0 5 7  
- 1 0  E245474222 
-106569077095 
-106902793368 
-107247132771 
- l a 7 6 0 2 6 4 1 1 0 8  
-1.7969903641 
-108349548881 
-108742252835 
-109148743788 
-1.9569807696 
-2.00006294286 
-200459123983 
-20  0929295794 
-201417896321 
-201926110099 
-20  2455231493 
-20  3006678470 
-203582008586 
-205182937643  
-204811361584 
-205533905657 
-206222448358 
-206883841314 
-207645820112 

-1 0 3617328315 
-103481800950 
-103347911976 
-1 03215617472 
-103084874581 
-1 02955641449 
-102827877170 
-102701541777 
-102576596113 
-102L53001863 
-102330721471 
-102209718099 
-102089955583 
- l a1971398398  
* - io1854011565 
-1017377~60706 
-101622611896 
-101508531677 
-101395486991 
-1.1283445145 
-101172373758 
- l o 1 0 6 2 2 4 0 7 1 1  
-100953014106 
-1 0 0 596512219 
-100739153380 
- 1 0  0630453430 
-1.0524535936 
-100419365718 
-10 0 314913997 
-100211145788 
-100108030863 
-1 0 0 0 05534568 

-09903624798 
-09802267910 
-09776494784 
-09601074765 
-09501167408 
-.9401670450 
-09302545503 
-09203043272 
-09104513037 
-09006231018 
-08908152164 
-08810229024 
-a8712411387 
-08614645864 
-08495353536 
-.a399676355 
-08321982189 
-00231330153 

1 0  3979639819 
lo4068014115  
1 0  4158300742 
10 4250556828 
1 0  4344842012 
10444121859O 
10 4539751665 
10 4640509318 
1. 4743562783 
1 0  4848986638 
1 0  4956859011 
l a  5067261804 
1.5180280930 
1 0  52960 0657 2 
1 0  5414533464 
l a  5535961192 
le5660394524  
105787943763 
le5918725137  
106052861219 
106190481389 
l a  6331722330 
1 0  6476728583 
10 6625653141 
lo6778658113  
lo6935915447  
l a  7097607724 
1 0  7263929044 
la7435085990  
la7611298714  
107792803959 
la7979849206  
l a  8172704733 
lo8371658353  
l a  8720759376 
1 0  8789118683 
lo9008315122  
1 0  9234994137 
la9469572815  
lo9710982664  
1.9962655525 
2.0223700238 
20 049469926'0 
20 0776289650 
2 ~ 1 0 6 9 1 7 0 1 3 0  
20  1374109344 
20 16919555?0 
202026007943 
20 2372684856 
20 2756107270 
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0299700 
03013E5 
0303030 
0304695  
0306360 
0308025 
0309690 
0311355 
0313020 
0314685 
0316350 
e318015 
0319680 
a321345 
0323010 
0324675  
0326340 
0328005 
0329070 
0331335 
i 3 3 3 0 0 0  

1 8 1 0 0 0  
I 8 2 0 0 0  
183000 

1 8 5 0 0 0  
I 8 6 0  0 0  
1 8 7 0 0 0  

184.00 

188.00 
1 8 9 0 0 0  
1 9 0  00 
I 9 1 0  0 0  
1920  00 
193.00 
194.00 
1950  0 0  
1 9 6 0 0 0  
1970 00  
l ? 8 0 0 0  
1990 0 0  
200000 
201000 

-208448574004  
-209295837773 
-3~001918618h5 
-301148541519  
-302157067681 
- 3 0  3231128883 
-304377280336 . 

- 3 0 5 6 0 7 5 1 1 4 9 1  
-306926706634  
- 3 0  8356120648 
- 3 0 9 9 0 f i 9 5 9 1 2  
-40   1600  027090 
- 4 0  3459461393 
-405517992396  
-407819084722 
- 5 0  Ob23682502 
-5.3418762853 
-5069427975b8 
-6.1236624056 
-606609166608  
-7o5462070183 

-08132303512 
-08026515603 
-0792720095€ 
0.7825532498 
-07725087533 
0.7623829977 
-07521826344 
-07418116002 
-.7314022390 
-07207272646 
0.7098576193 
-06987670650 
-06873990259 
-0675687465e 
-06635495434 
-06508665451 
0.6374769757 
-06231104791 
-06072920562 
-a5889647030 
-05642247053 

20 3135243828 
20 3514349899 
20 3933695625 
20 43753970  86 
2.4841616264 
20 5334847655 
205057992600 
206414065078 
20 7008277372 
2.7644301914 
208328427082 
209068729666 
209873991428 
30,0755936932 
301730331832 
3.2819088021 
3.4053231387 
30 5461653859 
3.7186515337 
3.9349576800 
4 . 2 5 7 7 5 6 4 3 1 1  
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Data for G and G with  sinusoidal  distribution  of  the  asperity  height 

SH = F/H 

2 4 

V = non-dimens ional SH 

V 

1.000 
2.000 
3.000 
4.000 

6.000 
7.000 
8.000 
9.000 

10.000 
11 eo00  
12.000 
13.000 
14eOOO 
15.000 
16.000 
17.000 
1 8 e O O O  
19 .000  
20.000 
21.000 
22.000 
230000 
24.000 
25.000 
26eOOO 
27.000 
28.000 

30.000 

5.000 

29,000 
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81.000 
82.000 
83.000 
8 4 r 0 0 0  
85.000 
~ 6 . 0 0 0  
8 7 0 0 0 0  
88.000 
f%ooo 
9 0 ~ 0 0 0  
9 l . 0 0 0  
92.000 
93.000 
94 ,000  
95 0 0 0  
96 . O O O  
97*OOO 

99.000 
100.000 
1 0 1  m O G 0  
102.000 
103.000 
104.000 
105.000 
106.000 
107.000 
1 0 ~ . 0 0 0  
1 0 9 0 0 0 0  
110.000 
1110000  
1 1 2 * @ 0 0  
1 1 3 * 0 0 0  

9 8 . 0 0 0  

114.000 
115.000 
116.000 
117.000 
118.000 
119.000 
1 2 0 ~ 0 0 0  
121.000 
122.000 
1 2 3 0 0 0 0  
124.000 
125.000 
1 2 ~ * 0 0 0  
127.000 
128.000 
129.000 
130e000  
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.. . . . . . . 

1.30 



i313020 
.314685 
5316350 
i318015 
i319680 
i321345 
i323010 - 
i324675 
T326340 
- .3zeoos 

._ -331336 
a329670 

a333000 

181.009 
182.000 
183,000 
1~1.000-  
185.000 
186.000 
187.000 
1 ~ ~ . 0 0 0  
189.000 
190,000 
191,000 
192.000 
193.000 

195.000 
196,000 
197.000 

194.000 

198.000 
199.000 
200.000 
201*090 
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C A S S U M I N G   S i K U S O I O A L   w A v I N E s S  PhO S I N U S O I D A L  HOWHIUESS D I S T R I B U T I O N  
c 
C T H i S  P H O G R Z M  C O X S I S T S   O F  3 SUBHIJUTINES 
C I - S U b R W i l I N E   G R L i S l N   I S  T C  C A L C U L A T E   # G R U B  THE  I?EDUCED  PRESSURE  AT 
C I ~ L E T  HY THE  SMOt'TH FILF! b k L b I N  APPkOACH 
C 2 - S b b R O U T I N E   R O b b h   I S  TO C A L C U L A T E   W k O U G H ( 1 )  9 THE  REDUCED  PRESSURE 
C T h E  1h;ET BY S T C C . t i a S T I C  I h € C K Y  FbR ROUGH  SURFACES 
C 3 - SUBROUTINE WAVI IS TO  CPLCULATE  WSZN(1)  t THE  REDUCED  PRESSURE  AT 
C ! h ' L E T   F O R   T F E   S I r . r l J 5 O I D A L   w P b i N E S 5   S U R F A C E   P H C F I L E  
C 
C DATP  CARD ; d o .  1 
C < F  = T O T M L   W M d E M  OF G R I D   F C I N T S  
C K t 4  = CHI0 NLiM3Ed * K X t K M )  = -2.0 
C N 4 C ?  = hbMi3LR OF k i 4 F L I T U b t   L A T A  
C NCYC = hLiMBER OF WAVIluESS CYCLES D A T A  
C DATA  CARD iq0. 2 
C h0 = C E ~ T E R  FILM T H I C K N E S S  

C P I  = 3.141593 
C DP. i A  CARD ib0. 3 
C l)CYC( I) = WFVINESS  CYCLES  .CPTA 
C DA7 A CARG l u 0 .  4 
C I ? A Y F ( I )  = A M P L I T U D E   D A T A  
C DATA  CARD NO. 5 

C VI = DIMENSIONLES~ C O h T A C T   L C A D  

C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 

C 

100 

THE 

A T  

THE 
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C 
1 
2 
3 
4 
5 
6 
7 

51 
52 
53 
54 
55 
C 

C 

C 

40 1 

402 

403 

4 1  
C 

STOP 

134 



135 



c 

136 



137 



59 

101 

102 

103 

106 

110 

C 

104 

105 
107 

.. ..."_ . , .. I..... , ..., .,., I I. I., 
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C 
1 
2 
3 
4 
5 
6 
7 
0 
9 
10 
11 
31 
32 
33 
34 
35 
36 

37 
38 
39 
4 0  
41 
42 
43 
44 
45 
47 
46 
49 
50 
51 
52 

53 

54 
55 
56 

C 
C 

STUP 
C 

END 

I 



- 

I 
. 

755 

701 
C 

757 

703 

7 0 2  
7 5 6  
C 
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C 

C 

50 1 

502 



C 
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C 

C 

603 

602 
60 1 
C 

60 7 
605 
C 
C 

608 

609 

61 0 

612 
61 1 
604 
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63 1 

632 

633 
C 
690 

62 1 

624 
623 
622 

625 

626 
69 1 
C 
7 
1 1  
66 1 
662 
663 
664 
665 
666 
C 

RETURR 

145 



O O O O O O O O U O O O ~ O O L I O O O ~ ~ ~  EhO OF FECOtW 
1 1 .  2 1  1 0 

0.03125 - ~ . i 1 5  -S . 
1. l u .  
0.3 

7.543b60E-13 0. 
’ 0.003 160. 

o.oLJooo1 

0 .s 0.5 0.5 0.5 0.25 0.25 0 .zs 
0.25 0.L5 u.125  c.123  0.0625  0.0625  0.03125  0.03125 

O.G(J74125 0.0078125 0.01!362S, G.UlSbZ5 (3,03125 0.03125 0.0625  0.0625 
0.03i25  0.03125  G.03125 Cm03ic5 0.03125  U.03lZ5  0.015625  0.015625 

61 69 2 9   2 9  15 2 
0.25 

0.015625  0.015625 u . ~ c , ~ ~ I z ~ G . o o ~ ~ L ~ ~  u.0078125  0.067812s 0 . 0 0 7 ~ 1 ~ s  0.0078125 

0.0078125  0.0078125  0.007blii5  C.0076125 O.OU78125 6.0078125  0.0078125  0.0079125 
C.015625  0.015625 O.U.3125 C.031~5  0.03125 0.03125 
3 .0025  0.0625  0.0625  0.0b2!~ 0.125 
0.125  0.125 

0 .  
8.194526E-05 
1.706H40E-03 
3.203592E-02 
1.054967E-01 
1.956441E-01 
4.590188E-01 
7.480454E-01 
6.430270E-Ul 
b.667687E-01 
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1.0i7.7a7t+O(3 
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5.580325E-05 
6.544889E-04 
2.187715E-02 
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A.745317E-01 
3.903927E-01 

B.325140E-01 
8.b22175E-01 

7.18771ZE-01 

8.881Z39E-01 
9.476705E-01 
YoY74024E-01 

4.85+906E+02 
9,Y14780E+01 
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L.d4dY27E*00 
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A.O3444OE*00 
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l . U L S b 4 ~ E * 0 0  
l.U15U50E*00 
1.003650E+00 
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0.125 0.375 0 0375 

G o 1 2 5  0.125 0.125 
1 .u 
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